13th Edition 2024 A Practical Book for **Mohammed Haroon** # **BUILDING ESTIMATION & QUANTITY SURVEYING** For All Civil Engineers & Architects (Diploma, Degree & Masters) Sub-Structure | Super-Structure | Concrete & Reinforcement - Calculations Format & Procedures for Project Work of Residential & Commercial Buildings ## A Practical book for # **BUILDING ESTIMATIONS** #### © ALL RIGHTS RESERVED BY THE AUTHOR This book or parts of this book should not be reproduced or translated in any form without the written permission of Author. A book for all Civil Engineers & Architects (Diploma, Degree, & Masters) By Mohammed Haroon Director of AL-Madina College of Chartered Quantity Survey Hyderabad, Telangana, India. #### Recommended by Mohammed Abdul Rasool B.E Civil (Structures), Osmania University Hyderabad India. working in Saudi Arabia from last 36 years Professor Mohammed Iqbal Ahmed B.E,Civil, M.E Environmental Head of Civil Engineering Department, K.B.N.C.E, Gulbarga University, Karnataka. FIRST EDITION – 2012 SECOND EDITION – 2013 Revised Edition THIRD EDITION – 2014 Revised Edition FOURTH EDITION – 2015 Revised Edition # TO MY MOTHER & FATHER ## **CONTENTS** | <u>Introduction</u> | Page no. | |---|-----------| | | | | | | | 1. Definition of Quantity Surveying | 01 - 01 | | 2. List of Topics under Quantity Surveying | 02 - 03 | | 3. Process of Executing Work on Site | 04 - 09 | | 4. Types of Footings | 10 - 19 | | 5. Types of Columns | 20 - 23 | | 6. Types of Floors | 24 - 24 | | 7. Types of Loads | 25 - 25 | | 8. Honey Comb | 25 - 26 | | 9. Types of Beams | 26 - 31 | | 10. Types of Slabs | 31 - 39 | | 11. Types of Walls | 40 - 46 | | 12. Types of Stair Cases | 46 - 47 | | 13. Unit Conversion (one, two & three dimension) | 48 - 54 | | 14. Rate Conversion | 55 - 56 | | 15. Length & Area Calculations | 57 - 59 | | 16. Shuttering Area Calculations | 60 - 60 | | 17. Volume Calculations | 61 - 61 | | 18. Problems & Solutions of Various types of Footings | 62 - 69 | | 19. Problems & Solutions of Various types of Columns | 70 - 79 | | 20. Problem & Solution of Roof Frame with Drop Beams | 80 - 83 | | 21. Problem & Solution of Dome Slab | 83 - 88 | | 22. Problem & Solution of Hardy Slab | 89 - 90 | | 23. Problem & Solution of Waffle Slab | 91 - 92 | | 24. Problem & Solution of Pitch Roof | 93 - 94 | | 25. Problem & Solution of Semi-round Stair Case | 95 - 98 | | 26. Problem & Solution of Lift Pit | 99 - 101 | | 27. Problem & Solution of Ramp | 102 - 104 | | 28. Standard Data required for Quantity Surveying | 104 - 106 | | Standard Weight and Density of Cement, Sand, Aggregate, Water & Steel, etc. | | |---|-----------| | 29. Brick work Calculations & Problems | 107 – 111 | | 30. Plastering Calculations & Problems | 112 – 117 | | 31. Emulsion paint (or Water Bond Paint for wall) Calculations & Problems | 118 – 118 | | 32. Wall Putty Calculation & Problem | 119 – 119 | | 33. Flooring Calculation & Problem | 120 - 120 | | 34. Over-Head Water Tank Calculation & Problem | 121 – 123 | | 35. Pictures of advance method of Plastering with machine | 124 – 124 | | 36. Complete Format & Method to prepare Estimate of Residential Villa Project | 125 – 127 | | with M.S office Excel Sheet and List of items to be calculated | | | 37. Project Drawings (Architectural, Structural & Reinforcement) | 128 – 152 | | SUB-STRUCTURE CALCULATIONS | | | 38. Calculation for (a)Volume of Concrete (b) Shuttering Area (c)Bitumen Paint Area | 153 - 154 | | (d) Polythene Sheet Area (e) Termite Control Area | | | 39. Calculation & Solution for Footings | 155 - 162 | | 40. Calculation & Solution for P.C.C under Footings | 163 – 164 | | 41. Calculation & Solution for Neck Columns | 165 - 174 | | 42. Calculation & Solution for Tie Beams & Strap beams | 175 - 178 | | 43. Calculation & Solution for P.C.C under Tie Beams | 179 – 181 | | 44. Calculation & Solution for Plinth Beams | 182 - 184 | | 45. Calculation & Solution for P.C.C under Plinth Beams | 185 - 186 | | 46. Calculation & Solution for 20 cm thick Slab with steel mesh under floor tiles | 187 – 189 | | 47. Calculation & Solution for Retaining Wall | 190 – 193 | | 48. Calculation & Solution for Rectangular Sump | 194 – 196 | | 49. Calculation & Solution for Circular Sump | 197 - 200 | | 50. Calculation & Solution for Septic Tank | 201 - 203 | | 61. Calculation & Solution for Earth Work Excavation & Back fill with Pit-Wise Method | 204 - 212 | C:M (cement:mortar) required for Brick work C:M (cement:mortar) required for Plastering **Concrete Mix Design with different Grades of Concrete** | 62. Abstract for the Quantities of Sub-Structure and its Solution | 213 – 216 | |--|-----------| | 63. Bill of Quantities for Sub-Structure | 217 – 217 | | SUPER-STRUCTURE CALCULATIONS | | | 64. Calculation for (a)Volume of Concrete (b) Shuttering Area | 218 – 218 | | 65. Calculation & Solution for Floor Columns | 219 - 228 | | 66. Calculation & Solution for Drop Beams | 229 - 232 | | 67. Calculation & Solution for Roof Slab | 233 - 239 | | 68. Calculation & Solution for Dog-Leg Stair Case | 240 - 242 | | 69. Calculation & Solution for Brick work | 243 - 247 | | 70. Calculation & Solution for cement : mortar required for Brick work | 248 - 248 | | 71. Calculation & Solution for Plastering | 249 - 280 | | 72. Calculation & Solution for cement : mortar required for Plastering | 281 - 282 | | 73. Calculation & Solution for Paint (Emulsion & Enamel paint) | 283 - 285 | | 74. Calculation & Solution for Wall Putty | 286 - 287 | | 75. Calculation & Solution for False Ceiling | 288 - 292 | | 76. Calculation & Solution for Flooring, Wall Skirting & Wall Tiles | 293 - 312 | | 77. Calculation & Solution for cement : mortar required for Flooring | 313 – 313 | | 78. Calculation & Solution for cement required for Wall Skirting & Wall Tiles | 314 – 314 | | 79. Bill of Quantities for Doors & Window | 315 – 316 | | 80. Calculation for the Fitting of Doors & Windows | 317 - 320 | | 81. Bill of Quantities for Doors & Windows Fittings | 321 - 321 | | 82. Window Grill & Gate Calculations | 322 - 322 | | 81. Calculation & Solution for Miscellaneous item (Loft, Kitchen Plat-form, Lintel, Sun-shade etc. | 323 - 338 | | 82. Abstract for the Quantities of Super-Structure (Concrete & Shuttering) | 339 – 339 | | 83. Abstract for the Quantities of Super –Structure | 340 - 341 | | 84. Bill of Quantities for Super-Structure | 342 - 343 | | 85. Bill of Quantities for Residential Villa | 344 - 345 | ## **REINFORCEMENT CALCULATIONS** | 86. Reinforcement Calculations | 346 – 346 | |--|-----------| | 87. Bar Bending Schedules (B.B.S) | 347 – 357 | | 88. Project Drawing for Reinforcement | 358 – 375 | | SUB-STRUCTURE REINFORCEMENT CALCULATIONS | 376 – 376 | | 89. Calculation & Solution of Reinforcement for Footings | 377 – 395 | | 90. Calculation & Solution of Reinforcement for Neck Column | 396 – 421 | | 91. Calculation & Solution of Reinforcement for Tie Beams | 422 – 431 | | 92. Calculation & Solution of Reinforcement for Plinth Beams | 432 – 440 | | 93. Calculation & Solution of Reinforcement for Slab under Floor Tiles | 441 – 450 | | 94. Calculation & Solution of Reinforcement for Retaining Wall | 451 – 478 | | 95. Calculation & Solution of Reinforcement for Rectangular Sump | 479 – 485 | | 96. Calculation & Solution of Reinforcement for Circular Sump | 486 – 493 | | 97. Calculation & Solution of Reinforcement for Septic Tank | 494 – 500 | | 98. Abstract of Reinforcement for Sub-Structure | 501 – 501 | | 99. Bill of Quantities for Reinforcement of Sub-Structure | 502 – 502 | | SUPER-STRUCTURE REINFORCEMENT CALCULATIONS | 503 – 503 | | 100. Calculation & Solution of Reinforcement for Columns | 504 – 536 | | 101. Calculation & Solution of Reinforcement for Drop Beams | 537 – 566 | | 102. Calculation & Solution of Reinforcement for Roof Slab | 567 – 584 | | 103. Calculation & Solution of Reinforcement for Dog-Leg Stair Case | 585 – 592 | | 104. Calculation & Solution of Reinforcement for Miscellaneous items | 593 – 606 | | 105. Abstract of Reinforcement for Super Structure | 607 - 607 | | 106. Bill of Quantities for Reinforcement of Super Structure | 608 - 608 | #### A Practical book for Quantity Surveying #### **<u>Definition</u>**: Quantity Surveying If any building is to be constructed, then finding out the quantities of all materials and cost required to construct it, is called as Quantity Surveying. #### **Topics under Quantity Surveying:** - 1. Types of footings. - 2. Types of columns. - 3. Types of beams. - 4. Types of slabs. - 5. Types of walls. - 6. Unit conversion→one/two/three →dimension conversion. - 7. Length calculation. - 8. Area calculation. - 9. Volume calculation. - 10. Module-I → Sub-structure calculation [Item below ground level]. - 11. Module-II → Super-structure calculation [Item above ground level]. - 12. Module-III → Reinforcement calculation for R.C.C and Steel structure. - 13. Module-IV → Computer Application (MS Excel sheet and Auto-cad). - 14. Module-V → Project work. #### (A). List of items to be calculated below Ground level [sub structure] - 1. P.C.C under footings - 2. Footings - 3. Neck columns - 4. Tie beams and Strap beams - 5. P.C.C under Tie beams - 6. Plinth beams or Ground beams - 7. P.CC. under plinth beams - 8. Grade Slab or Slab on Grade - 9. Retaining wall - 10. Retaining wall Base. - 11. Retaining wall P.C.C. - 12. Water calculation - 13. Rectangular Sump - 14. Circular Sump - 15. Septic tank - 16. Lift pit - 17. Earth work Excavation calculation - 18. Back- Fill calculation - 19. Abstract for the Quantities of Sub-structure. - 20. Bill of Quantities - 21. Concrete proportions and Ratios with Concrete
mix-design #### List of items to be calculated for each item below Ground level - 1. Volume of Concrete in m³ - 2. Area of Shuttering in m² - 3. Area of Water-proof membrane with bitumen paint in m² - 4. Area of Termite control in m² - 5. Area of Polythene sheet or Vapour Barrier in m² - 6. Reinforcement in Kgs or Tones #### (B). List of items to be calculated above Ground level [Super Structure] - 1. Floor columns - 2. Floor beams - 3. Floor slabs - 4. Stair cases (Typical & Semi-Circular) - 5. Ramp (inclined & Semi-Circular) - 6. Parking platform - 7. Brick work (No. of bricks required) - 8. Cement: Mortar required for brick work - 9. Wall putty calculation - 10. Paint calculations in Liters (Emulsion paint & Enamel paint) - 11. False-Ceiling Calculations in m² - 12. Flooring Calculations (Marble tiles, Vitrified tiles, Parking Tiles & Inter-lock Tiles) - 13. Wall Skirting Calculations - 14. Wall Tiles (Ceramic Tiles) calculations - 15. Wood calculations for doors & windows - 16. Doors & Windows Fittings (Tower bolt, Door handle etc) - 17. Windows grill, Glass, and Iron Gate calculations - 18. Over-Head Water tank Calculations - 19. Expansion Joint Details - 20. Weight of Concrete Calculations for Pre-cast Wall, Column, Slabs etc. - 21. Calculation for the miscellaneous item (Lintel, Loft (Chajjas), Window Sunshade & Kitchen Platforms. - 22. Abstract for the quantities of super structure - 23. Bill of Quantities for Super structure. #### **PROCESS OF EXECUTING WORK ON SITE** - 1. Termite control (anti-fungus spray) - 2. Polythene sheet (thickness = 2mm to 4mm) - 3. Plain Cement concrete bed or Blinding (thickness of blinding = 10cm) P.C.C bed without Reinforcement. - 4. R.C.C Footing (Reinforced cement concrete bed) - 5. Neck column (From top of footing up to bottom of Ground beam) - 6. Ground level - 7. Floor column (Part of Column above Ground Level) - 8. Bitumen Paint #### **Earth work excavation:** This is the process of digging earth on site where the foundation is to be laid. #### **Termite Control:** After excavation, compaction is done on the earth's surface and then it is treated with *termite control (Anti fungus spray)*. Generally Earth is treated to control the attack of the insects to the structure and protecting the Sub-Structure item from future damage; Liquid spray is sprayed on the Surface of the Earth and is kept open to the atmosphere for 24 hours to kill all types of insects which is likely to come in future time. AL-Madina Institute of Quantity Survey Head Office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad India; Phone no. : +919550259317; +91 40 66710031; +919849067535 Website: www.quantitysurveyindia.com #### **Polythene sheet:** Polythene sheet is laid on the surface of ground after Termite Control Spray is spread. Generally they are 2mm to 6mm thick. The purpose of laying sheet is to hold the water of concrete and not letting it to have seepage on ground. Generally when plain Cement concrete is put on surface of the ground, the water from the concrete will come out and it will be absorbed by the earth, then concrete will loose its workability and strength. #### Plain Cement Concrete bed: [P.C.C. Bed] This is also called as blinding. It is just a mixture of cement, sand and aggregate without reinforcement. Generally the Grade of concrete for P.C.C is used as $M_{7.5}$ with ratio or proportion of concrete as 1:4:8. Where 1 = one bag of cement; 4 = four bags of Sand; 8 = eight bags of Aggregate. And 40 liters of water / m^3 . The thickness of Blinding is 10cm or 100mm or 0.10m. #### **Reinforced cement concrete (R.C.C):** This is a Concrete with cement, sand and aggregate with reinforcement. Generally the Grade of concrete is used as M_{15} with ratio 1:2:4, Where 1 = one bag of cement; 2 = two bags of Sand; 4 = four bags of Aggregate. And 30 liters of water / m^3 #### **Neck column:** The part of Column which comes between the top of footing to bottom of Ground beam is called as **Neck column**. **<u>Bitumen paint:</u>** It can be in liquid form or in Sheet form. It's a black colour paint, painted to the structure wshich is under ground before back filling of Soil. The purpose of using the Bitumen paint is to - (i) Increase the life of the structure - (ii) Give strength to it - (iii) To acts as water-proofing agent - (iv) And to safe the structure from Corrosion. #### **Types of Footings** - 1. Plain Footing - 2. Step Footing - 3. Isolated/Strip/Tapered Footing - 4. Plain Combined Footing - 5. Isolated Combined Footing - 6. Strap footing or Neighbor footing or Shoe Footing - 7. Raft Footing - 8. Pile Footing #### 1. Plain Footing:- These footings are generally common in both India as well as Gulf countries. It is easy to construct and consume less time. It is constructed where the soil bearing capacity is normal (Good). $SBC = 24kn / m^3$ C=Column; F=Footing #### 2. **Step footing:-** These types of footings were constructed in olden days, now they are out dated. #### 3. <u>Isolated Footing:-</u> These types of footings are constructed for single column and they may be in square or rectangular shape. **AL-Madina Institute of Quantity Survey** Head Office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad India; Phone no.: +919550259317; +91 40 66710031; +919849067535 Website: www.quantitysurveyindia.com #### 4. Combined Footing:- A footing which has more than one column is called as combined footing. They are constructed for two or more column and they may be in rectangular or trapezoidal in shape. It is design in a place where the space is limited, where due to lack of space we cannot cast individual footings, therefore footings are combined in to one footing. #### 5. Strap or Neighbor or Shoe-footing:- Shoe footing is the half footing cut-out from the original footing and which has shape of Shoe. It is provided on the corner of plot next to Neighbors' plot. Where there is no provision of setback area. They are constructed on property boundary. **Note:** All the Shoe-footings are constructed on the soil, where the soil bearing capacity (SBC) is normal. $SBC = 24 \text{kn} / \text{m}^3$ **6.** Raft Footing:- Its is one footing in on whole plot and it provided in a places like seashore area, coastal area or beach area where the water table is very high and the soil bearing capacity is weak. Such as five star hotels and High-rise buildings near the beaches. When number of column in more than one row, provided with a combined footing, the footing is called as Mat or Raft Footing. #### **Process of executing Raft:** There are two steps involved in executing the Raft Footing, Namely - (i) De-watering and - (ii) Shoring - i) **De-watering:** It is the process of taking off water from excavated area and discharging it to any other place. ii) **Shoring:** It is nothing but Shuttering for the wall of excavated pit, to avoid the sliding of soil. . Note: Raft footing does not have Neck column, they start directly from the ground surface but reinforcement of neck column starts from Raft. - 7. <u>Pile Footing:-</u> They are constructed where excessive settlement is to be eliminated and where the load is to be transferred through soft soil stratum, where the Soil bearing capacity is sufficient. - ➤ Piles are nothing but round columns, they may be pre-cast or cast- in- situ [cast on site] - These types of footings are provided when the Soil bearing capacity of soil is very weak and the Ground water table (level) is high, - > The main objective of providing piles under the footing is to prevent structure from settlement. - > If we don't provide pile under the footing, then the building will have settlement. - > Piles are hammered in to the ground till hard strata (in compressible) layer of earth is found. - ➤ These types of footings are generally designed on sea shore areas. #### **Types of Columns** #### > Square column or Rectangular column: They are generally used in construction of buildings, which are common in practice; these types of column are provided only if the shape of room is rectangular or square. #### **Circular column:** They are special designed columns; they are generally used in piling and in the elevation of buildings. #### > "L" type column: They are generally used in the corners of the boundary wall. #### > "T" type column: They are used depending on design requirements and also in over bridges, etc. #### > "V" type column: Depending upon the structure, they are also constructed in buildings, if the shape of the room is trapezoidal. #### **Hexagon type column:** They are generally modified columns to give a good look to the column, which is provided in open verandah and Halls. #### > Arch type column: These types of columns are design if the room has arch shape. #### > "Y" type column: These types of columns are generally used in the construction of bridges, fly-over's, etc. #### > "Y" type column with arch: It is similar to Y column, but to give a good look to the column, arch shape is provided. . **AL-Madina Institute of Quantity Survey** Head Office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad India; Phone no.: +919550259317; +91 40 66710031; +919849067535 Website: www.quantitysurveyindia.com #### **Types of Floors:** - Basement Floor - Podium Floor - ➤ Ground Floor - Mezzanine Floor - ➤ First Floor - > Typical Floor - Helipad #### **Basement Floor**: The floor which is constructed below ground level for store rooms or mechanical room or parking is called as Basement Floor. #### **Podium Floor:** The floor which is constructed either below ground level or above ground level, especially for car parking is called as Podium floor. #### **Ground Floor:** The floor which is constructed on ground level is called as Ground floor. #### **Mezzanine Floor:** The floor which is constructed between Ground and First Floor is called as Mezzanine floor. This type of floor is constructed for Services of building, shops & offices, to
provide facilities for the occupants who are living in High-rise buildings. For proper ventilation the ceiling height of floor is increase 1 metre more than the normal ceiling height. #### **First Floor:** The floor which is constructed above ground floor or above mezzanine floor is called as first floor. **Typical Floor:** Typical floor is nothing but repeated floor. The plan which is design for Ground floor and want to have the same plan for other floors, then these floors are called as Typical floor-1 or typical floor-2, etc. #### **Helipad:** The floor which is constructed above Roof Floor and which is used for Landing of Helicopter or Taking off of Helicopter is called as Helipad. #### Types of load - 1. Point load - 2. Uniformly Distributed Load [UDL] - 3. Wind load - 4. Concentric load - 5. Rolling load or Moving load - 6. Dead load - 7. Live load - 8. Self load - 9. Seismic load - **10.** Eccentric load #### **Honey comb** Honey comb is nothing but voids or gaps in the concrete structure after removing the wooden or iron Shutter. Honey comb appears in concrete structure mainly due to heavy reinforcement inside structure. (For example more no. of stirrups in columns or beams etc.) To prevent concrete from honey comb, Vibrator should run in concrete in proper manner during filling of concrete. The vibrator should run with specific time. The duration of running vibrator should not exceed more than 30 seconds; otherwise it will start separating water from concrete, which will let the concrete to lose its workability and strength. In some cases even after running the vibrator honey comb will appear and in such cases add the admixture to cement: mortar and paste it in voids and concrete will regain its strength. Phone no.: +919550259317; +91 40 66710031; +919849067535 Website: www.quantitysurveyindia.com #### **Types of Beams** #### 1. Tie beam: The beam which ties two footings from one face of footing to the other face of footing with linear (straight) length is called as Tie beam. **AL-Madina Institute of Quantity Survey** Head Office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad India; Phone no.: +919550259317; +91 40 66710031; +919849067535 Website: www.quantitysurveyindia.com #### 2. STRAP beam: The beam which ties two footings from one face of footing to another face of footing with inclined length or with an angle is called as Strap beam. **AL-Madina Institute of Quantity Survey** #### 3. Plinth beam or Ground beam: The beam which ties two columns from one face of column to another face of the Column is called as plinth beam. Plinth beams are casted above natural ground **level (N.G.L)** and below building ground level **(B.G.L)**. #### 4. Drop beam & Inverted beam: Beams under the Slab are called as Drop beams and if they are inverted, then they are called as Inverted beams. #### 5. Concealed beam: The beam which supports the slab within the thickness of the slab is called as concealed beam. #### 6. Cantilever beam: The beam supported on one end and free on other end is called as Cantilever beam. ## **Types of Slab** - 1. Conventional Slab (i)one-way slab (ii)Two ways slab - 2. Hardy or Hordy slab - 3. Waffle slab - 4. Dome slab - 5. Pitch roof - 6. Projected slab or portico slab - 7. Pre-stressed slab - 8. Cable suspension slab - 9. Slab with arches - 10. Grade slab - 11. Hollow-core ribbed slab - 12. Sunken-slab or Depressed slab - 13. Low roof / Loft or Chajja 1. Flat slabs: The slab which is supported on Columns head or Column caps without beams is called as Flat slab. Conventional or Ordinary slabs are of two types, - (i) **One way slab:** Main reinforcement for bending moment will be only in one direction, the other reinforcement will be distribution steel. - (ii) Two way slab: Reinforcement for bending moment will be in two directions. ### 2. Hordy or Hardy slab: Hardy slab or Hordy slab is a type of slab which is most commonly used in overseas, the process of execution is as follows:- **Step 1→** Form work is arranged and then shutters are fixed on the form work Step 2 → Hardy blocks are placed on the shutter with one brick gap on the entire shutter <u>Step 3 →</u> The gaps between the blocks are called as rib. Reinforcement is provided in a form of beam within the gap such as rib. **Step 4** \rightarrow After placing the rib, the Plane steel mesh is placed on the entire slab area resting on ribs. **Step 5→** Now, pouring of concrete is done on whole slab. **Note** \rightarrow the thickness of slab = 27cm; the thickness of Hardy block = 20cm. ## 3. Waffle slab: This is a type of slab where we find hollow hole in the slab when the form work is removed. This is generally constructed in the hotels, universities and restaurants, etc. ## 4. **Dome slab:** These types of slabs are generally constructed in temples, mosques, palaces, etc. ## 5. Pitch roof: Pitch roof is an inclined slab, generally constructed on resorts for a natural look. They are also constructed near gardens, re-creation centers, etc **AL-Madina Institute of Quantity Survey** Head Office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad India; Phone no.: +919550259317; +91 40 66710031; +919849067535 Website: www.quantitysurveyindia.com ### 6. **Projected slab:** The slab which has one side fixed and the other side is free is called as Projected slab. These types of slabs are generally constructed in hotels, universities functions, halls, etc. to use that area for dropping or picking up zone and for loading and unloading area. ### 7. Pre-stress Concrete slab: Pre-stressing is artificially induced compressive stresses in a structure before it is loaded so that the tensile stresses which might be caused by the external dead and live load are automatically canceled and the cracks are eliminated. These are done by pre-tensioning and post tensioning. It is best suited for mass production of pre-cast members. # 8. Cable suspension slab: If the span of slab is very long, then we go for cable suspension slab which is supported on cable, such as Howrah Bridge and London Bridge, etc. ### 9. Ground slab or Grade Slab: The slab which is casted on surface of earth is called as Ground slab. This type of slab is used in Basement Floor. ## 10. Slab with arches: This is a type of slab which is generally adopted in construction of bridges. AL-Madina Institute of Quantity Survey Head Office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad India; Phone no.: +919550259317; +91 40 66710031; +919849067535 Website: www.quantitysurveyindia.com ## 11. Hollow core ribbed slab: This is a type pre-cast slab used to reduce the weight of slab. This slab is directly placed on floor beam with the help of cranes and pasted with screed. ## 12. Sunken slab or Depressed slab: This kind of slab is provided only for toilets & kitchens, so that the drainage pipe can be laid in to it. 13. Low Roof and Loft: low roof is provided on lintel-level of doors and loft is provided in kitchens for storage of house material. Low roof Loft ### **Types of walls** - 1. Brick masonry wall - 2. Course rubble stone masonry wall or C.R.S Wall - 3. Random rubble stone masonry wall or R.R.S Wall. - 4. Retaining wall - 5. Shear wall - 6. Curtain wall - 7. Pre-cast wall - 8. Parapet wall - 9. Compound or boundary wall - 10. Drop wall - 11. Partition wall - 12. Load bearing wall - 13. Core wall ### 1. Brick masonry wall: The wall which is constructed with bricks is called as brick wall. The thickness of brick wall could be 10cm or 20cm. 10cm wall is called as Single brick wall or partition wall. 20cm wall is called as Double brick wall or outer wall of house or boundary wall. The density of Brick = 2.42 kgs/cm^3 With fine clay = 1.92 kgs/cm^3 **Note:** the length of the Brick wall in single stretch should not exceed more than 4m. If it exceeds a column must and should be constructed with bricks or R.C.C. ## 2. Course Rubble Stone masonry: The wall which is constructed with regular size of Granites is called as course rubble stone masonry. ## 3. Random Rubble Stone: The wall which is constructed with irregular size of granite is called as Random Rubble Stone masonry. **AL-Madina Institute of Quantity Survey** Head Office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad India; Phone no.: +919550259317; +91 40 66710031; +919849067535 Website: www.quantitysurveyindia.com 4. **Retaining wall:** A wall designed to maintain unequal level of ground on its two faces is called as retaining wall. The wall which is constructed all around the plot below ground level to retain the soil and land sliding after the earth work excavation on site is called as retaining wall. Retaining wall can be made up of R.C.C or C.R.S Phone no.: +919550259317; +91 40 66710031; +919849067535 Website: www.quantitysurveyindia.com ## 5. Shear wall: The wall which is constructed around the water Sump, lift pit or stair case to retain the soil is called as Shear wall. It will share two pressures i.e, water pressure & soil pressure or water pressure & wind pressure. ## 6. Curtain wall: The wall which is constructed with glass and aluminum or steel frame in a long hall to make individual cabins is called as Curtain wall. ### 7. Pre-cast wall: The readymade wall which is made up of R.C.C and which is directly installed on site is called as Pre-cast wall. ## 8. Parapet wall: The wall is constructed on the top roof of the building to prevent the falling in anything from the roof. The height of wall = 3 ft. ## 9. Boundary wall or compound wall: The wall which is constructed all around the house to show the limits of plot is called as Boundary wall. ## 10. Drop wall or Non-Load bearing wall: It is a type of wall which is very thin of having thickness 1" to 2". Generally it is constructed with Reinforced mesh (kabutar jali) and cement: mortar plaster. ### 11. Partition wall: The wall which divides one room to two rooms is called as Partition wall. ###
12. Load bearing wall: The building structure which is resting on walls instead of columns, those walls which are bearing the weight of structure are called as Load bearing wall. The thickness of wall = 30 cm to 40cm. ## 13. Core wall: This wall is constructed from foundation and it is used as columns in buildings and which will rise up to the height of the building. ## **Types of Stair-case:** AL-Madina Institute of Quantity Survey Head Office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad India; Phone no.: +919550259317; +91 40 66710031; +919849067535 Website: www.quantitysurveyindia.com ## **Unit Conversion** ### One dimensional calculation: The distance between two points is called as length and the length calculation is called as one dimensional calculation. ## **Two-dimensional calculation:** Two-dimensional calculation is carried out in two directions, i.e. "X" and "Y" axes, so it is also called as area calculation or two dimensional calculations. ### **Three-dimensional calculation:** Three-dimensional calculation is carried out in three directions, i.e. "X","Y"&"Z" axes_and it is called as volume calculation or three dimensional calculation. # **Types of unit conversion:** M.K.S unit (Meter-Kilogram/Second): Meters, Centimeters, millimeters. These units are called as Engineering units. **<u>F.P.S unit (Foot-Pound/Second):</u>** Feet, inches & yards. These units are called as Architectural units. | S.no | Unit | Denoted by | One dimension | Two Dimension | Three dimension | |------|-----------------|--|---|--|--| | | | symbol | (Length) | (Area) | (Volume) | | 1 | Meter | M | M | $M \times M = M^2$ or SQM or Square meter | $M \times M \times M = M^3$ or CUM or Cubic meter | | 2 | Centimeter | ter CM CM \times CM \times CM = CM ² or SCM or Square centime | $CM \times CM = CM^2$ or SCM or $Square$ centimeter | $CM \times CM \times CM = CM^3$ or $CUCM$ or $Cubic$ | | | | | C1/1 | | CHAIN CHAIN OF SCHAIN OF SQUARE COMMISSION | centimeter | | 3 | 3 Millimeter MM | MM | MM | $MM \times MM = MM^2$ or SMM or $Square$ | $MM \times MM \times MM = MM^3$ or CUMM or | | | | 141141 | Millimeter | Cubic millimeter | | | 4 | Feet | FT | FT | $FT \times FT = FT^2$ or SFT or Square feet | $FT \times FT \times FT = FT^3 \text{ or CFT or Cubic feet}$ | | 5 | 5 Inch | INCH | INCH | INCH x INCH = $INCH^2$ or SINCH or Square | INCH x INCH x INCH = $INCH^3$ or CINCH | | | | | | inch | or Cubic inch | | 6 | Yard | rd YD | YD | $YD \times YD = YD^2$ or SYD or Square yard | $YD \times YD \times YD = YD^3 \text{ or CYD or Cubic}$ | | | | | | | yard | # **Scales:** | 1 meter = 1000 mm | 1'' = 2.54 cm | |-------------------------------|------------------------------| | 1 meter = 100 cm | 1" = 25.4 mm | | 1 cm = 10 mm | 1 yard = 36" | | 1 meter = 1.0936 yd | 1 yard = 3 feet | | 1 meter = 3.28 ft | $1yd^2 = 9$ square feet | | 1 meter = 39.37 " | 1 acre = 4840 yd^2 | | 1 feet = 12" | 1 hectare = 2.47 acre | | Problems on unit conversion with solutions | | | | |--|--|--|---| | S.no | One dimensional problem conversion | Two dimensional problem conversion | Three dimensional problem conversion | | 3.110 | (length conversion) | (Area conversion) | (Volume conversion) | | 1 | 15m = ? fts
Since $1m = 3.28$ ft
Therefore $15 \times 3.28 = 49.212$ ft | $15\text{m}^2 = ? \text{ fts}^2$
Since $1\text{m} = 3.28 \text{ ft}$
Therefore $15 \times 3.28^2 = 161.458 \text{ ft}^2$ | $15\text{m}^3 = ? \text{ fts}^3$
Since $1\text{m} = 3.28 \text{ ft}$
Therefore $15 \times 3.28^3 = 529.72 \text{ ft}^3$ | | 2 | 22 m = ? inches
Since 1m = 39.37"
Therefore 22 x 39.37" = 866.141" | $22 \text{ m}^2 = ? \text{ inches}^2$
Since $1 \text{m} = 39.37$ "
Therefore 22×39.37 " $^2 = 34100.06$ " | $22 \text{ m}^3 = ? \text{ inches}^3$
Since $1 \text{m} = 39.37$ "
Therefore 22×39.37 " $= 1342522.37$ " | | 3 | 2.5 m = ? mm
Since $1\text{m} = 1000\text{mm}$
Therefore $2.5 \times 1000 = 2500 \text{ mm}$ | $2.5 \text{ m}^2 = ? \text{ mm}^2$ Since $1\text{m} = 1000\text{mm}$ Therefore $2.5 \times 1000^2 = 2500000 \text{ mm}^2$ | $2.5 \text{ m}^3 = ? \text{ mm}^3$ Since $1\text{m} = 1000\text{mm}$ Therefore $2.5 \times 1000^3 = 2500000000 \text{ mm}^3$ | | 4 | 2.0 m = ? cm
Since $1\text{m} = 100 \text{ cm}$
Therefore $2.0 \times 100 = 200 \text{ cm}$ | $2.0 \text{ m}^2 = ? \text{ cm}^2$
Since $1\text{m} = 100 \text{ cm}$
Therefore $2.0 \times 100^2 = 20000 \text{ cm}^2$ | $2.0 \text{ m}^3 = ? \text{ cm}^3$
Since $1\text{m} = 100 \text{ cm}$
Therefore $2.0 \times 100^3 = 2000000 \text{ cm}^3$ | | 5 | 14m = ? yd
Since 1m = 1.093 yd
Therefore 14 x 1.093 = 15.302 yd | $14m^{2} = ? yd^{2}$ Since 1m = 1.093 yd Therefore 14 x 1.093 ² = 16.74 yd ² | $14m^{3} = ? yd^{3}$ Since 1m = 1.093 yd Therefore 14 x 1.093 ³ = 18.31 yd ³ | | 6 | 18ft = ? yd Since 1 yd = 3' Therefore $18 / 3 = 6.0 yd$ | $18ft^{2} = ? yd^{2}$
Since 1 yd = 3'
Therefore $18 / 3^{2} = 2.0 yd^{2}$ | $18ft^{3} = ? yd^{3}$
Since 1 yd = 3'
Therefore $18 / 3^{3} = 0.666 yd^{3}$ | | 7 | 15ft = ? inches
Since 1 ft = 12"
Therefore 15 x 12 = 180" | $15 \text{ft}^2 = ? \text{ inches}^2$
Since 1 ft = 12"
Therefore 15 x $12^2 = 2160$ " | $15ft^{3} = ? \text{ inches}^{3}$
Since 1 ft = 12"
Therefore 15 x $12^{3} = 25920^{\circ 3}$ | | 8 | 15ft = ? m
Since 1 m = 3.28 ft
Therefore $15/3.28 = 4.57 m$ | $15 \text{ft}^2 = ? \text{ m}^2$
Since 1 m = 3.28 ft
Therefore $15/3.28^2 = 1.394 \text{ m}^2$ | $15 \text{ft}^3 = ? \text{ m}^3$
Since 1 m = 3.28 ft
Therefore $15/3.28^3 = 0.425 \text{m}^3$ | | 9 | 15 ft = ? cm Since 1 ft = 12" Therefore 15 x 12 = 180" Since 1" = 2.54 cm Therefore 180 x 2.54 = 457.20 cm | $15ft^{2} = ? cm^{2}$ Since 1 ft = 12" Therefore 15 x 12 ² = 2160" ² Since 1" = 2.54cm Therefore 2160 x 2.54 ² = 13935.456 cm ² | $15ft^{3} = ? cm^{3}$ Since 1 ft = 12" Therefore 15 x 12 ³ = 25920" ³ Since 1" = 2.54cm Therefore 25920 x 2.54 ³ = 424752.69 cm ³ | |----|--|---|---| | 10 | 1ft = ? mm
Since 1 ft = 12"
Therefore 1 x 12 = 12"
Since 1" = 25.4mm
Therefore 12 x 25.4 = 304.8 mm | $1ft^{2} = ? mm^{2}$ Since 1 ft = 12" Therefore 1 x 12 ² = 144" ² Since 1" = 25.4mm Therefore 144 x 25.4 ² = 92903.04 mm ² | $1ft^{3} = ? mm^{3}$ Since 1 ft = 12" Therefore 1 x 12 ³ = 1728" ³ Since 1" = 25.4mm Therefore 1728 x 25.4 ³ = 28316846.59 mm ³ | | 11 | 12 yd = ? mm
Since 1 yd = 36"
Therefore 12 x 36 = 432"
Since 1" = 25.4mm
Therefore 432 x 25.4 = 10972.8 mm | $12 \text{ yd}^2 = ? \text{ mm}^2$ Since 1 yd = 36" Therefore 12 x 36 ² = 15552" ² Since 1" = 25.4mm Therefore 15552 x 25.4 ² = 10033528.32 mm ² | $12 \text{ yd}^3 = ? \text{ mm}^3$ Since 1 yd = 36" Therefore 12 x 36 ³ = 559872" ³ Since 1" = 25.4mm Therefore 559872 x 25.4 ³ = 9174658296 mm ³ | | 12 | 1.5 yd = ? cm
Since 1 yd = 36"
Therefore 1.5 x 36 = 54"
Since 1" = 2.54cm
Therefore 54 x 2.54 = 137.16 cm | $1.5 \text{ yd}^2 = ? \text{ cm}^2$ Since 1 yd = 36" Therefore 1.5 x 36 ² = 1944" ² Since 1" = 2.54cm Therefore 1944 x 2.54 ² = 12541.91 cm ² | $1.5 \text{ yd}^3 = ? \text{ cm}^3$
Since 1 yd = 36"
Therefore 1.5 x 36 ³ = 69984" ³
Since 1" = 2.54cm
Therefore 69984 x 2.54 ³ = 1146832.287
cm ³ | | 13 | 15 yd = ? m
Since 1 m = 1.093 yd
Therefore 15 / 1.093 = 13.723 m | $15 \text{ yd}^2 = ? \text{ m}^2$
Since 1 m = 1.093 yd
Therefore 15 / 1.093 ² = 12.555 m ² | $15 \text{ yd}^3 = ? \text{ m}^3$
Since 1 m = 1.093 yd
Therefore 15 / 1.093 ³ = 11.487 m ³ | | 14 | 25 yd = ? ft Since 1 yd = 3 ft Therefore 25 x 3 = 75 ft | $25 \text{ yd}^2 = ? \text{ ft}^2$
Since 1 yd = 3 ft
Therefore $25 \times 3^2 = 225 \text{ ft}^2$ | $25 \text{ yd}^3 = ? \text{ ft}^3$
Since 1 yd = 3 ft
Therefore $25 \times 3^3 = 675 \text{ ft}^3$ | | 15 | 18 yd = ? inches
Since 1 yd = 36" | $18 \text{ yd}^2 = ? \text{ inches}^2$
Since 1 yd = 36" | $18 \text{ yd}^3 = ? \text{ inches}^3$
Since 1 yd = 36" | | | Therefore $18 \times 36 = 648$ " | Therefore $18 \times 36^2 = 23328^{2}$ | Therefore $18 \times 36^3 = 839808^{3}$ | |----|--|--|---| | | 9600 mm = ? inches | $9600 \text{ mm}^2 = ? \text{ inches}^2$ | 9600 mm ³ =? inches ³ | | 16 | Since 1 inch = 25.4 mm | Since 1 inch = 25.4 mm | Since 1 inch = 25.4 mm | | | Therefore 9600 / 25.4 = 377.952" |
Therefore $9600 / 25.4^2 = 14.88^{2}$ | Therefore $9600 / 25.4^3 = 0.585$ " | | | 5500 mm = ? ft | $5500 \text{ mm}^2 = ? \text{ ft}^2$ | $5500 \text{ mm}^3 = ? \text{ ft}^3$ | | | Since 1 inch = 25.4 mm | Since 1 inch = 25.4 mm | Since 1 inch = 25.4mm | | 17 | Therefore $5500 / 25.4 = 216.535$ " | Therefore $5500 / 25.4^2 = 8.525^{2}$ | Therefore $5500 / 25.4^3 = 0.335^{3}$ | | | Since 1ft = 12" | Since 1ft = 12" | Since 1ft = 12" | | | Therefore $216.535/12 = 18.044$ ft | Therefore $8.525/12^2 = 0.059 \text{ ft}^2$ | Therefore $0.335/12^3 = 0.000194 \text{ ft}^3$ | | | 800 mm = ? cm | $800 \text{ mm}^2 = ? \text{ cm}^2$ | $800 \text{ mm}^3 = ? \text{ cm}^3$ | | 18 | Since $1 \text{ cm} = 10 \text{ mm}$ | Since $1 \text{ cm} = 10 \text{ mm}$ | Since $1 \text{ cm} = 10 \text{ mm}$ | | | Therefore $800 / 10 = 80 \text{ cm}$ | Therefore $800 / 10^2 = 8 \text{ cm}^2$ | Therefore $800 / 10^3 = 0.8 \text{ cm}^3$ | | 19 | 800 mm = ? m
Since 1 m = 1000 mm
Therefore 800 / 1000 = 0.8 m | $800 \text{ mm}^2 = ? \text{ m}^2$ Since 1 m = 1000 mm
Therefore 800 / 1000 ² = 0.0008 m ² | $800 \text{ mm}^3 = ? \text{ m}^3$
Since 1 m = 1000 mm
Therefore $800 / 1000^3 = 0.0000008 \text{ m}^3$ | | 20 | 9500 mm = ? yd
Since 1 inch = 25.4 mm
Therefore 9500 / 25.4 = 374.015"
Since 1 yd = 36"
Therefore 374.015/36 = 10.389 yd | $9500 \text{ mm}^2 = ? \text{ yd}^2$
Since 1 inch = 25.4 mm
Therefore $9500 / 25.4^2 = 14.725^2$
Since 1 yd = 36"
Therefore $14.725/36^2 = 0.011361 \text{ yd}^2$ | $9500 \text{ mm}^3 = ? \text{ yd}^3$
Since 1 inch = 25.4 mm
Therefore $9500 / 25.4^3 = 0.5797^{3}$
Since 1 yd = 36"
Therefore $0.579/36^3 = 0.0000124 \text{ yd}^3$ | | 21 | 850 cm = ? yd
Since 1 inch = 2.54 cm
Therefore 850 / 2.54 = 334.645"
Since 1 yd = 36"
Therefore 334.645/36 = 9.295 yd | $850 \text{ cm}^2 = ? \text{ yd}^2$
Since 1 inch = 2.54 cm
Therefore $850 / 2.54^2 = 131.75$ " ²
Since 1 yd = 36"
Therefore $131.75/36^2 = 0.1016 \text{ yd}^2$ | $850 \text{ cm}^3 = ? \text{ yd}^3$
Since 1 inch = 2.54 cm
Therefore $850 / 2.54^3 = 51.87$ " ³
Since 1 yd = 36"
Therefore $51.87/36^3 = 0.00111 \text{ yd}^3$ | | 22 | 600 cm = ? ft
Since 1 inch = 2.54 cm
Therefore 600/ 2.54 = 236.22"
Since 1 ft = 12" | $600 \text{ cm}^2 = ? \text{ ft}^2$
Since 1 inch = 2.54 cm
Therefore $600/2.54^2 = 93.0^{\circ 2}$
Since 1 ft = 12" | $600 \text{ cm}^3 = ? \text{ ft}^3$
Since 1 inch = 2.54 cm
Therefore $600/2.54^3 = 36.614^{3}$
Since 1 ft = 12" | | | Therefore 236.22/12 = 19.685 ft | Therefore $93.0/12^2 = 0.645 \text{ ft}^2$ | Therefore $93.0 / 12^3 = 0.0538 \text{ ft}^3$ | |----|---|---|--| | | 100 cm = ? inch | $100 \text{ cm}^2 = ? \text{ inch}^2$ | $100 \text{ cm}^3 = ? \text{ inch}^3$ | | 23 | Since 1 inch = 2.54 cm | Since 1 inch = 2.54 cm | Since 1 inch = 2.54 cm | | | Therefore $100 / 2.54 = 39.37$ " | Therefore $100 / 2.54^2 = 15.50^{2}$ | Therefore $100 / 2.54^3 = 6.10^{3}$ | | | 3500 mm = ? m | $3500 \text{ mm}^2 = ? \text{ m}^2$ | $3500 \text{ mm}^3 = ? \text{ m}^3$ | | 24 | Since $1 \text{ m} = 1000 \text{ mm}$ | Since $1 \text{ m} = 1000 \text{ mm}$ | Since $1 \text{ m} = 1000 \text{ mm}$ | | | Therefore $3500 / 1000 = 3.50 \text{ m}$ | Therefore $3500 / 1000^2 = 0.0035 \text{ m}^2$ | Therefore $3500 / 1000^3 = 0.0000035 \text{ m}^3$ | | | 650 cm = ? mm | $650 \text{ cm}^2 = ? \text{ mm}^2$ | $650 \text{ cm}^3 = ? \text{ mm}^3$ | | 25 | Since $1 \text{ cm} = 10 \text{ mm}$ | Since $1 \text{ cm} = 10 \text{ mm}$ | Since $1 \text{ cm} = 10 \text{ mm}$ | | | Therefore $650 \times 10 = 6500 \text{ mm}$ | Therefore $650 \times 10^2 = 65000 \text{ mm}$ | Therefore $650 \times 10^3 = 650000 \text{ mm}$ | | | 300 inch = ? mm | $300 \text{ inch}^2 = ? \text{ mm}^2$ | $300 \text{ inch}^3 = ? \text{ mm}^3$ | | 26 | Since 1 inch = 25.4 mm | Since 1 inch = 25.4 mm | Since 1 inch = 25.4 mm | | | Therefore $300 \times 25.4 = 7620 \text{ mm}$ | Therefore $300 \times 25.4^2 = 193548 \text{ mm}^2$ | Therefore $300 \times 25.4^3 = 4916119.2 \text{ mm}^3$ | | | 28 inch = ? cm | $28 \text{ inch}^2 = ? \text{ cm}^2$ | $28 \text{ inch}^3 = ? \text{ cm}^3$ | | 27 | Since 1 inch = 2.54 cm | Since 1 inch = 2.54 cm | Since 1 inch = 2.54 cm | | | Therefore $28 \times 2.54 = 71.12 \text{ cm}$ | Therefore $28 \times 2.54^2 = 180.644 \text{ cm}^2$ | Therefore $28 \times 2.54^3 = 458.837 \text{ cm}^3$ | | | 915 inch = ? m | 915 inch ² = ? m^2 | 915 inch ³ = ? m ³ | | 28 | Since 1 $m = 39.37$ " | Since 1 $m = 39.37$ " | Since 1 m = 39.37 " | | | Therefore $915 / 39.37 = 23.241 \text{ m}$ | Therefore $915 / 39.37^2 = 0.59 \text{ m}^2$ | Therefore $915 / 39.37^3 = 0.0149 \text{ m}^3$ | | | 665 inch = ? ft | $665 \text{ inch}^2 = ? \text{ ft}^2$ | $665 \text{ inch}^3 = ? \text{ ft}^3$ | | 29 | Since $1ft = 12$ " | Since 1ft = 12" | Since 1ft $= 12$ " | | | Therefore $665 / 12 = 55.416$ ft | Therefore $665 / 12^2 = 4.618 \text{ ft}^2$ | Therefore $665 / 12^3 = 0.384 \text{ ft}^3$ | | | 6512 inch = ? yd | $6512 \text{ inch}^2 = ? \text{ yd}^2$ | $6512 \text{ inch}^3 = ? \text{ yd}^3$ | | 30 | Since $1yd = 36$ " | Since $1yd = 36$ " | Since $1yd = 36$ " | | 30 | Therefore $6512 / 36 = 180.888 \text{ yd}$ | Therefore $6512 / 36^2 = 5.024 \text{ yd}^2$ | Therefore $6512 / 36^3 = 0.139 \text{ yd}^3$ | | | • | Therefore 0312 / 30 = 3.024 yd | | | | 6'6'' = ? ft | | | | 31 | Since 1 ft $= 12$ " | | | | 31 | 6/12 = 0.5 ft | - | - | | | Therefore $6' + 0.5' = 6.5$ ft | | | | 32 | 9'3"= ? m | | | | | Since 1 ft = 12" | - | - | | | 3 / 12 = 0.25 ft | | | |----|---|---|---| | | Therefore $9' + 0.25' = 9.25$ ft | | | | | Since $1m = 3.28$ ft | | | | | Therefore $9.25/3.28 = 2.82 \text{ m}$ | | | | | 8'3/4" = ? inch | | | | 22 | Since 1 ft = 12 " | | | | 33 | 8 x 12 = 96" | - | - | | | 96" +3/4"" = 96" + 0.75" = 96.75" | | | | | 4'4" = ? cm | | | | | Since 1 ft = 12" | | | | 24 | Therefore $4 \times 12 = 48$ " | | | | 34 | 48" + 4"" = 52" | - | - | | | Since $1'' = 2.54 \text{ cm}$ | | | | | Therefore $52 \times 2.54 = 132.08 \text{ cm}$ | | | | | 12'4" = ? mm | | | | | Since 1 ft = 12" | | | | 35 | Therefore $12 \times 12 = 144$ " | | | | 33 | 144" + 4" = 148" | - | - | | | Since 1" = 25.4mm | | | | | Therefore $148 \times 25.4 = 3759.2 \text{ mm}$ | | | | 36 | 18'12" = ? yd | | | | | Since 1 ft = 12" | | | | | Therefore $12 / 12 = 1$ ft | | | | | 18' + 1' = 19 ft | - | - | | | Since $1yd = 3$ ft | | | | | Therefore $19/3 = 6.33$ yd | | | # **Rate Conversion** **Problem-1:** if Rate/ft = 12 rupees; what will be Rate/m = ? ## **Solution**: Method-1: Since 1 m = 3.28 ft $= 12 \times 3.28$ = 39.36 or approximately equal to 40 rupees / m Method-2: 1ft = ? m Since 1m 3.28 ft = 1/3.28 = 0.304 m Since 1 ft = 0.304 m = 0.304 m = 12 rupees = 1 m = ? $= (1/0.304) \times 12$ = 39.47 or approximately equal to 40 rupees / m ## Problem-2: Rate/Sft = 25 rupees Rate/ $m^2 = ?$ # **Solution:** Method-1: Since 1 m = 3.28 ft $= 25 \times 3.28^2$ = 268.96 or approximately equal to 269.0 rupees / m^2 ``` Method-2: 1 \text{ft}^2 = ? \text{ m}^2 Since 1m 3.28 ft = 1/3.28² = 0.0929 m² Since 1 \text{ft}^2 = 0.0929 \text{ m}^2 = 0.0929 m² = 25 rupees = 1 m² = ? = (1/0.0929) x 25 = 269.0 rupees / m² ``` ## **Problem-3:** Rate/Cft = 55 rupees $= 1941.40 \text{ rupees} / \text{m}^3$ Rate/ $m^3 = ?$ ## **Solution** ``` Method-1: Since 1 m = 3.28 ft = 55 \times 3.28^3 = 1940.81 or approximately equal to 1941.0 rupees / m³ Method-2: 1ft³ = ? m³ Since 1m 3.28 ft = 1/3.28^3 = 0.02833 \text{ m}^3 Since 1ft³ = 0.02833 \text{ m}^3 = 0.02833 \text{ m}^3 = 55 rupees = 1 m³ = ? = (1/0.02833) \times 55 ``` ### **Length and Area Calculations** Formulas: ### 1. Square or Rectangle (i) Area = $$A = L \times B$$ (ii) Peripheral Length = $$L = (L+B) \times 2$$ ## 2. Pythagoras theorem this theorem is used to find out any inclined length $$c^2 = a^2 + b^2$$ $$c = V(a^2 + b^2)$$ ## 3. Tri-angle (i) Area = $$A = 1/2 \times B \times H$$ # 4. Irregular Tri-angle (i) Area = $$A = V (s(s-a) (s-b) (s-c))$$ where $$s = (a + b + c)/2$$ (ii) Peripheral Length = $$L = a + b + c$$ ## 5. Equilateral Tri-angle (i) Area = $$A = (a^2/4) \times V3$$ (ii) Peripheral Length = $$L = a + a + a = 3a$$ ## 6. Isosceles Tri-angle (i) Area = A = $$(a/4) \times V 4b^2 - a^2$$ (ii) Peripheral Length = $$L = a + b + b = a + 2b$$ ## 7. Trapezoidal (i) Area = $$A = 1/2$$ (a+b) x h (ii) Peripheral Length = $$L = a + b + c + c$$ ## 8. Hexagon (i) Area = $$A = (0.5 \times r \times 0.5 \times r \times Tan60) \times 6$$ ### 9. Circle (i) Area = A = $$\pi/4 \times d^2$$ where d = diameter of circle; $$\pi = 3.14$$ (ii) Peripheral Length = $$L = 2 \times \pi \times r$$ ### 10. Semi-Circle (i) Area = A = $$\pi/4 \times d^2 \times 0.50$$ where d = diameter of circle; $$\pi = 3.14$$ (ii) Peripheral Length = $$L = 2 \times \pi \times r \times 0.50$$ where $$r = radius$$ of circle ## 11. Quarter Circle (i) Area = A = $$\pi/4 \times d^2 \times 0.25$$ where d = diameter of circle; $$\pi = 3.14$$ (ii) Peripheral Length = $$L = 2 \times \pi \times r \times 0.25$$ where $$r = radius of circle$$ ### 12. Segmental Arc (i) Area = A = $$(2/3 \times D \times H) + (H^3/2D)$$ where d = diameter of circle H = height of arc (ii) Arc Length = L = $$(8b - 2r)/3$$ where r = radius of circle b = V $(r^2 + h^2)$ ### **Wooden or Iron Shuttering Area Calculations** ### Problem-1: find shuttering area for the given column $$L = (0.80 + 0.60) \times 2$$ $$L = 2.80 \text{ m}$$ ### Problem-2: find shuttering area for the given column peripheral length = $$L = 2 \times \pi \times r$$ $$L = 2 \times \pi \times 0.25$$ ## **Volume of Concrete Calculations** ### Problem-1: find Volume of concrete for the given Rectangular column therefore area of column = L x
B $$A = 0.80 \times 0.60$$ $A = 0.48 \text{ m}^2$ ### Problem-2: find Volume of concrete for the given column therefore area of column = $$\pi/4 \text{ xd}^2$$ $$A = \pi/4 \times 0.5^2$$ $$A = 0.196 \text{ m}^2$$ ### **Problems on Footings** ### Problem-1: For a given Plain-footing find - 1. volume of concrete - 2. Area of Shuttering - 3. Area of Bitumen paint #### Solution: 1. Volume of Concrete = Area x Depth .= 0.80 x 0.80 x 0.50 .= 0.32 m³ 2. Shuttering Area = Peripheral Length x Depth .= (0.80 + 0.80) x 2 x 0.50 $.= 1.6 \text{ m}^2$ #### SECTION DWG. $F = 0.80 \text{m} \times 0.80 \text{m} \times 0.50 \text{m}$ $C = 0.35m \times 0.35m$ 3. Bitumen paint Area = peripheral length x Depth + top area - Column Area $$= (L + B) \times 2 \times D + L \times B - I \times b$$ (Column Dimension) $$= (0.80 + 0.80) \times 2 \times 0.50 + 0.80 \times 0.80 - 0.35 \times 0.35$$.= 2.117 m² Problem-2: For a given Plain-Combined footing find 1. volume of concrete $F = 3.50 \text{m} \times 1.20 \text{m} \times 0.60 \text{m}$ 2. Area of Shuttering $C_1 = 0.40 \text{m} \times 0.40 \text{m}$ 3. Area of Bitumen paint $C_2 = \emptyset = 0.50$; #### Solution: 1. Volume of Concrete = Area x Depth .= 3.5 x 1.20 x 0.60 .= 2.52 m³ 2. Shuttering Area = Peripheral Length x Depth .= (3.5 + 1.2) x 2 x 0.60 .= 5.64 m² 3. Bitumen paint Area = peripheral length x Depth + top area - Column Area .= (L + B) x 2 x D + L x B - l x b (Column Dimensions) .= (3.5 + 1.2) x 2 x 0.60 + 3.5 x 1.2 - 0.40 x 0.40 - $$\pi/4$$ x 0.5² .= 9.483 m² Problem-3: For a given Shoe-footing find F = 0.60m x 0.50m x 0.55m 1. volume of concrete $C = 0.25m \times 0.25m$ 2. Area of Shuttering 3. Area of Bitumen paint Solution: $$.= (L + B) x 2 x D$$ SECTION DWG. 3. Bitumen paint Area = peripheral length x Depth + top area - Column Area $$= (L + B) \times 2 \times D + L \times B - I \times b$$ (Column Dimension) Problem-4: For a given Raft-footing find 1. volume of concrete 2. Area of Shuttering 3. Area of Bitumen paint F = 12.5m x 10.6m x 1.40m $C_1 = 0.40 \text{m} \times 0.40 \text{m}$ $C_2 = 0.40 \text{m} \times 0.50 \text{m}$ $C_3 = 0.50 \text{m} \times 0.50 \text{m}$ #### Solution: 1. Volume of Concrete = Area x Depth $= L \times B \times D$.= 12.5 x 10.6 x 1.4 .= 185.50 m³ 2. Shuttering Area = Peripheral Length x Depth .= 64.68m² therefore column area = $L \times B \times no.$ of columns $C_1 = 0.40 \times 0.40 \times 3 = 0.48 \text{ m}^2$ $$C_2 = 0.40 \times 0.50 \times 3 = 0.60 \text{ m}^2$$ $C_3 = 0.50 \times 0.50 \times 3 = 0.75 \text{ m}^2$ Total Column area = $0.48 + 0.60 + 0.75 = 1.83 \text{ m}^2$ 3. Bitumen paint Area = peripheral length x Depth + top area - Column Area $= (L + B) \times 2 \times D + L \times B - I \times b$ (Column Area) .= (12.5 + 10.6) x 2 x 1.40 + 12.5 x 10.6 - 1.83 .= 195.35 m² Problem-5: For a given Step-footing find 1. volume of concrete 2. Area of Shuttering 3. Area of Bitumen paint $F = step-1 : 0.80m \times 0.80m \times 0.25m$ $F = step-2 : 0.70m \times 0.70m \times 0.25m$ $F = step-3 : 0.60m \times 0.60m \times 0.25m$ $C = 0.30m \times 0.30m$ #### Solution: 1. Volume of Concrete = Area x Depth step-1 .= $0.80 \times 0.80 \times 0.25$.= 0.16 m^3 step-2 .= $0.70 \times 0.70 \times 0.25$.= 0.122 m^3 step-3 .= $0.60 \times 0.60 \times 0.25$.= 0.09 m^3 Total Volume _= 0.372 m³ 2. Shuttering Area = Peripheral Length x Depth $$= (L + B) \times 2 \times D$$ step-1 .= $(0.80 + 0.80) \times 2 \times 0.25$.= 0.80 m^2 step-2 .= $(0.70 + 0.70) \times 2 \times 0.25$.= 0.70 m^2 step-3 .= $(0.60 + 0.60) \times 2 \times 0.25$.= 0.60 m^2 Total Area _= 2.10 m² #### SECTION DWG. 3. Bitumen paint Area = peripheral length x Depth + top area - top step area step-1 .= $(0.80 + 0.80) \times 2 \times 0.25 + 0.80 \times 0.80 - 0.7 \times 0.70$. = 0.95 m^2 step-2 .= $(0.70 + 0.70) \times 2 \times 0.25 + 0.70 \times 0.70 - 0.60 \times 0.60$. = 0.83 m^2 step-3 .= $(0.60 + 0.60) \times 2 \times 0.25 + 0.60 \times 0.60 - 0.30 \times 0.30$.= 0.87 m^2 Total Area .= 2.65 m² Problem-6: For a given Pile-under footing (pile-cap) find - volume of concrete Area of Shuttering - 3. Area of Bitumen paint Solution: - 1. Volume of Concrete = Area x Depth .= $\pi/4 \times d^2 \times D$.= $\pi/4 \times 0.5^2 \times 3.5$.= 0.687 m³ - 2. Shuttering Area = Peripheral Length x Depth $.= 2 x \pi x r x D$ $.= 2 x \pi x 0.25 x 3.50$ $.= 5.49 m^2$ Pile Dimension: \emptyset = 0.50m; height = 3.5m 3. Bitumen paint Area = peripheral length x Depth + bottom area $$= 2 \times \pi \times r \times D + \pi/4 \times d^2$$ $$= 2 \times \pi \times 0.25 \times 3.50 + \pi/4 \times 0.5^{2}$$ Problem-7: For a given Isolated-footing find 1. volume of concrete 2. Area of Shuttering 3. Area of Bitumen paint footing dimension: Bottom dimension : $L_1 = 0.85m$; $B_1 = 0.85m$ Top dimension : $L_2 = 0.50m$; $B_2 = 0.50$ Depth of Footing = 0.91m Solution: $C = 0.35 \times 0.35$ 1. Volume of Concrete = Area x Depth Part-1: .= L x B x D .= 0.675 x 0.675 x 0.58 .= 0.264 m³ Therefore Average length "L" = $(L_1 + L_2)/2$.= (0.85 +0.50)/2 .= 0.675m Therefore Average Breadth "B" = $(B_1 + B_2)/2$.= (0.85 +0.50)/2 .= 0.675m 1. Volume of Concrete = Area x Depth Part-2: .= $L \times B \times D$.= 0.85 x 0.85 x 0.33 $.= 0.238 \text{ m}^3$ P.C.C BED SECTION DWG. Total volume of concrete for the footing = vol. of part-1 + vol. of part-2 .= 0.264 + 0.238 .= 0.502m³ 2. Shuttering Area = Peripheral Length x Depth Part-1: .= (L + B) x 2 x D .= (0.675 + 0.675) x 2 x 0.58 .= 1.566 m² Part-2: .= (L + B) x 2 x D .= (0.85 + 0.85) x 2 x 0.33 .= 1.122 m² Total shuttering area for the footing = area. of part-1 + area of part-2 .= 1.566 + 1.122 .= 2.688 m² 3. Bitumen paint Area = peripheral length x Depth + top area - Column Area Part-1: $.= (L + B) \times 2 \times D + L \times B - L \times B$ (Column area) .= (0.675 + 0.675) x 2 x 0.58 + 0.50 x 0.50 - 0.35 x 0.35 .= 1.693 m² Bitumen paint Area = peripheral length x Depth Part-2: .= (L + B) x 2 x D .= (0.85 + 0.85) x 2 x 0.33 .= 1.122 m² Total Bitumen paint area for the footing = area. of part-1 + area of part-2 .= 2.815 m² Problem-8: For a given Combined Isolated-footing find 1. volume of concrete 2. Area of Shuttering 3. Area of Bitumen paint footing dimension: Bottom dimension : $L_1 = 0.85m$; $B_1 = 0.85m$ Top dimension : $L_2 = 0.50m$; $B_2 = 0.50$ Depth of Footing = 0.91m C $_1$ = 0.35 x 0.35 $C_2 = 0.40 \times 0.40$ Solution: 1. Volume of Concrete = Area x Depth Part-1: .= L x B x D .= 2.40 x 1.0 x 0.45 .= 1.08 m³ Therefore Average length "L" = $(L_1 + L_2)/2$ = (2.80 + 2.0)/2 .= 2.40m SECTION DWG. ``` Therefore Average Breadth "B" = (B_1 + B_2)/2 .= (1.20 + 0.80)/2 .= 1.0m ``` 1. Volume of Concrete = Area x Depth $.= 0.84 \text{ m}^3$ Total volume of concrete for the footing = vol. of part-1 + vol. of part-2 .= 1.92m³ 2. Shuttering Area = Peripheral Length x Depth Part-1: $$.= (L + B) \times 2 \times D$$.= 3.06 m² Part-2: $$.= (L + B) x 2 x D$$ Total shuttering area for the footing = area. of part-1 + area of part-2 .= 5.06 m² 3. Bitumen paint Area = peripheral length x Depth + top area - Column Area Part-1: $$.= (L + B) \times 2 \times D + L \times B - L \times B$$ (Column area) .= 4.3775 m² Bitumen paint Area = peripheral length x Depth Part-2: .= $$(L + B) \times 2 \times D$$ $$= 2.0 \text{ m}^2$$ Total Bitumen paint area for the footing = area. of part-1 + area of part-2 .= 6.3775 m² ## **Problems on Columns** Problem-1: For a given Square Column find - 1. volume of concrete - 2. Area of Shuttering - 3. Area of Bitumen paint Solution: 1. Volume of Concrete = Area x Depth .= L x B x D .= 0.45 x 0.45 x 3.0 .= 0.607 m³ 2. Area of Shuttering = Peripheral Length x Depth .= (L+B) x 2 x D .= (0.45 + 0.45) x 2 x 3.0 .= 5.40 m² 3. Area of Bitumen paint = Peripheral Length x Depth .= (L+B) x 2 x D .= (0.45 + 0.45) x 2 x 3.0 .= 5.40 m² Problem-2: For a given Circular Column find - 1. volume of concrete - 2. Area of Shuttering - 3. Area of Bitumen paint Solution: 1. Volume of Concrete = Area x Depth $$= \pi/4 \times d^2 \times D$$ $= \pi/4 \times 0.6^2 \times 3.0$.= 0.848 m³ $$= 2 \times \pi \times r \times D$$ $$= 2 \times \pi \times 0.30 \times 3.0$$ $$= 2 \times \pi \times 0.30 \times 3.0$$ Solution: To find the area of column divide area in to two parts therefore area1 = $$0.55 \times 0.20 = 0.11$$ therefore Peripheral length $$= 0.55 + 0.55 + 0.20 + 0.35 + 0.35 + 0.20$$ **PLAN** $$= 2 \times \pi \times r \times D$$ $$= 2 \times \pi \times 0.30 \times 3.0$$ $$= 2 \times \pi \times 0.30 \times 3.0$$ Solution: To find the area of column divide area in to two parts therefore area1 = $$0.60 \times 0.25 = 0.15$$ therefore Peripheral length = $$0.60 + 0.25 + 0.20 + 0.40 + 0.20 + 0.40 + 0.20 + 0.25$$ Problem-5: For a given arc-type Column find 1. volume of concrete 2. Area of Shuttering 3. Area of Bitumen paint #### Solution: first find the arc length and to find this, use segmental arc length formula $$arc length = (8B - 2r)/3$$ where $$B = V H^2 + r^2$$ therefore with centre line method $$B = V 0.50^2 + 0.60^2$$ $$B = 0.781$$ $$arc length = (8B - 2r)/3$$ 1.682 - 0.40 therefore Length of column = 1.682m; Breadth of column = 0.40m and Depth of column = 3.0m 1. Volume of Concrete = Area x Depth $$.= L x B x D$$ 2. Shuttering Area = Peripheral length x Depth 3. Area of Bitumen paint = Peripheral Length x Depth For a given 'V'-type Column find Problem-6: - 1. volume of concrete - 2. Area of Shuttering - 3. Area of Bitumen paint Solution: To find the area of column divide area in to two parts therefore area₁ = $$L \times B = 0.475 \times 0.30 =$$ $$area_1 = L \times B = 0.475 \times 0.30 = 0.1425$$ $area_2 = L \times B = 0.475 \times 0.30 = 0.1425$ $$L_1 = 0.55$$; $L_2 = 0.40$ and $B = 0.30$ average $$L = (L_1 + L_2)/2$$ 2. Shuttering Area = Peripheral length x Depth therefore Peripheral length = 0.55 + 0.55 + 0.30 + 0.40 + 0.40 + 0.30 3. Area of Bitumen paint =
Peripheral Length x Depth .= 2.50 x 3.0 # Problem-7: For a given Hexagon-type Column find - 1. volume of concrete - 2. Area of Shuttering - 3. Area of Bitumen paint #### Solution: 2. Shuttering Area = Peripheral length x Depth .= $$6 \times r \times D$$.= $6 \times 0.30 \times 3.0$.= 5.40 m^2 therefore Peripheral length = 6r 3. Area of Bitumen paint = Peripheral Length x Depth .= $$6 \times r \times D$$.= $6 \times 0.30 \times 3.0$.= 5.40 m^2 Problem-8: For a given 'Y'-type Column find - 1. volume of concrete - 2. Area of Shuttering - 3. Area of paint Solution: 1. Volume of Concrete = front area of Column x thickness of Column .= 0.288 m³ To find out front area of Column, divide front area of column in to three parts Area of part-1 (triangle shape) .= $1/2 \times b \times h$.= 0.50 x 0.35 x 0.60 .= 0.105 m² Area of part-2 (triangle shape) $= 1/2 \times b \times h$.= 0.50 x 0.35 x 0.60 .= 0.105 m² Area of part-3 (rectangle shape) .= L x B .= 0.30 x 2.50 $.= 0.75 \text{ m}^2$ Total Front area of Column = 0.105 + 0.105 + 0.75 .= 0.96 m² 2. Shuttering Area = front area of column + back area of column + side area of column + side area of column .= 0.96 + 0.96 + 0.778 + 0.778 .= 3.476 m² therefore side area can be find out by dividing the side area in to two parts : ## part-1: side area for part-1 = L x B .= $$0.30 \times 1.90$$.= 0.57 m^2 → 0.35 | - 0.30 part-2: side area for part-2 = L x B $$= 0.30 \times 0.694$$ $= 0.208 \text{ m}^2$ according to Pythagoras theorem: inclined length = c = $$V(a^2 + b^2)$$.= $V(0.35^2 + 0.60^2)$.= 0.694m 3. Area of paint = Area of Shuttering $$.= 3.476 \text{ m}^2$$ Problem-9: For a given 'Y'-type Column with arch find 1. volume of concrete 2. Area of Shuttering 3. Area of paint Solution: 1. Volume of Concrete = Front Area x thickness of Column .= 1.069 x 0.40 .= 0.4276 m³ To find out front area of Column, divide front area of column in to three parts 1. area of Square = $L \times B = 0.80 \times 0.80$.= 0.64 m^2 2.area of Circle = $\pi/4 \times d^2$. = $\pi/4 \times 0.8^2$.= 0.502m^2 Deduction of circle area from square area .= 0.64 - 0.502 Area for four panels .= 0.138 m² .= 0.138/4 Area of each panel .= 0.0345 m² Front area of column: 1. Part-1 = $$0.0345 \text{ m}^2$$ 2. Part-2 = $$0.0345 \text{ m}^2$$ 3. Part-3 = L x B = $$0.40 \times 2.50 = 1.0 \text{ m}^2$$ total area = $0.0345 + 0.0345 + 1.0 = 1.069 \text{ m}^2$ 2. Shuttering Area = front area of column + back area of column + side area of column + side area of column .= 1.069 + 1.069 + 1.091 + 1.091 .= 4.32 m² therefore side area can be find out by dividing the side area in to two parts : part-1: part-2: side area for part-2 = $$L \times B$$ Formula to find out arc length for quarter circle: arc length = $2 \times \pi \times r \times 1/4$ Hence total side area = $A_1 + A_2$ 3. Area of paint = Area of Shuttering - 0.40 - Problem-10: For a given Roof frame find volume of concrete & area of shuttering for - 1. Columns - 2. Drop Beams - 3. Roof Slabs $C1 = 0.40 \times 0.40$; $C2 = 0.50 \times 0.45$; $C3 = 0.45 \times 0.60$ PLAN SHOWING ROOF FRAME DETAILS AL-Madina Institute of Quantity Survey #### (i) Solution for Columns: 1. Volume of Concrete = Area x Depth x no. of Columns .= L x B x D x no.s > Column-1 .= $0.40 \times 0.40 \times 3.15 \times 2 = 1.008 \text{ m}^3$ Column-2 .= $0.50 \times 0.45 \times 3.15 \times 2 = 1.417 \text{ m}^3$ Column-3 .= $0.45 \times 0.60 \times 3.15 \times 2 = 1.701 \text{ m}^3$ Total volume of concrete required for Floor columns = 4.126 m³ 2. Shuttering Area = Peripheral length x Depth x no. of Columns Column-1 .= $(0.40 + 0.40) \times 2 \times 3.0 \times 2 = 9.60 \text{ m}^2$ Column-2 .= $(0.50 + 0.45) \times 2 \times 3.0 \times 2 = 11.40 \text{ m}^2$ Column-3 .= $(0.45 + 0.60) \times 2 \times 3.0 \times 2 = 12.60 \text{ m}^2$ Total shuttering area required for Floor Columns = 33.60 m³ Note: while calculating shuttering area for Columns, Height of column should be taken up to Ceiling Height, excluding Slab thickness. ## (ii) Solution for Drop Beams: 1. Volume of Concrete for Drop beam = Area x Length x no. of beams $$=L \times B \times D$$ - a. Drop beam on axis-A between axis-1 and axis-2 $= 4.50 \times 0.40 \times 0.50 = 0.90 \text{ m}^3$ - b. Drop beam on axis-A between axis-2 and axis-3 $= 4.00 \times 0.45 \times 0.50 = 0.90 \text{ m}^3$ - c. Drop beam on axis-B between axis-1 and axis-2 $= 4.50 \times 0.50 \times 0.50 = 1.125 \text{ m}^3$ - d. Drop beam on axis-B between axis-2 and axis-3 $= 4.00 \times 0.55 \times 0.60 = 1.32 \text{ m}^3$ - e. Drop beam on axis-1 between axis-A and axis-B $= 4.10 \times 0.40 \times 0.50 = 0.82 \text{ m}^3$ - f. Drop beam on axis-2 between axis-A and axis-B $= 4.10 \times 0.50 \times 0.50 = 1.025 \text{ m}^3$ - g. Drop beam on axis-3 between axis-A and axis-B $= 4.05 \times 0.60 \times 0.65 = 1.579 \text{ m}^3$ Total volume of Concrete for Drop beams = 7.669 m^{-3} Note: (i) for finding out shuttering area for Drop beam, for internal beams, slab thickness is to be deducted from both side of beams, i.e. external and internal face. $.= L \times D + L \times D + L \times B$ #### Calculations: $= 4.50 \times 0.50 + 4.50 \times 0.35 + 4.5 \times 0.40 = 5.625 \text{ m}^2$ Drop beam on axis-A between axis-1 and axis-2 Note: for external Drop beams Slab thickness has to be deducted from depth of beam from internal face of beams $= 5.20 \text{ m}^2$ b. Drop beam on axis-A between axis-2 and axis-3 $= 4.0 \times 0.50 + 4.0 \times 0.35 + 4.0 \times 0.45$ $= 6.075 \text{ m}^2$ Drop beam on axis-B between axis-1 and axis-2 $= 4.50 \times 0.5 + 4.50 \times 0.35 + 4.50 \times 0.50$ c. $= 6.40 \text{ m}^2$ d. Drop beam on axis-B between axis-2 and axis-3 $= 4.00 \times 0.60 + 4.0 \times 0.45 + 4.0 \times 0.55$ $= 5.125 \text{ m}^2$ Drop beam on axis-1 between axis-A and axis-B $= 4.10 \times 0.50 + 4.10 \times 0.35 + 4.10 \times 0.40$ e. $= 4.92 \text{ m}^2$ f. Drop beam on axis-2 between axis-A and axis-B $= 4.10 \times 0.35 + 4.10 \times 0.35 + 4.10 \times 0.50$ Note: for internal Drop beams Slab thickness has to be deducted from depth of beam from both side of beams $= 7.0875 \text{ m}^2$ Drop beam on axis-3 between axis-A and axis-B $= 4.05 \times 0.65 + 4.05 \times 0.50 + 4.05 \times 0.60$ g. = 40.432 m Total Shuttering area for Drop beams ## (ii) Solution for Roof Slab: 1. Volume of Concrete = Area x Depth .= L x B x D Slab-1 (S1) .= $4.50 \times 4.10 \times 0.15 = 2.76 \text{ m}^3$ Slab-2 (S2) .= $4.0 \times 4.05 \times 0.15 = 2.43 \text{ m}^3$ Total Volume = 5.19 m^3 2. Shuttering Area = Bottom area of Slab .= L x B Slab-1 (S1) .= $4.50 \times 4.10 = 18.45 \text{ m}^2$ Slab-2 (S2) .= $4.00 \times 4.05 = 16.20 \text{ m}^2$ ## **DOME SLAB CALCULATION** Problem-11: For a given Roof frame find volume of concrete & area of shuttering for 1. Roof Slab 2. Dome Slabs PLAN SHOWING DETAILS OF ROOF SLAB WITH DOME SLAB (A) Solution for Roof Slab: = Area x Depth x no. of Slabs .= L x B x D x no.s $= 12.50 \times 10.80 \times 0.20 \times 1 = 27.0 \text{ m}^3$ Deduction of Dome area 1. Volume of Concrete (i) Dome-1 = Area x Depth $= \pi / 4 \times d^2 \times D$ $= \pi /4 \times 2.80^2 \times 0.20$.= 1.231 m³ (ii) Dome-2 = Area x Depth $= \pi / 4 \times d^2 \times D$ $= \pi /4 \times 1.80^2 \times 0.20$ $.= 0.508 \text{ m}^3$ (iii) Dome-3 = Area x Depth $= \pi / 4 \times d^2 \times D$ $= \pi /4 \times 1.60^2 \times 0.20$.= 0.402 m³ Cylinder details Total volume of concrete required = 27.0 - 1.231 - 0.508 - 0.402= 24.859 m^3 AL-Madina Institute of Quantity Survey Head office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad. Phone no.: +91 40 66710031; +91 9550259317; website: www.quantitysurveyindia.com # 2. Shuttering area = (Bottom area of floor slab + peripheral length of Dome-1 x Depth + peripheral length of Dome-2 x Depth + peripheral length of Dome-3 x Depth) .= $$L \times B + 2 \times \pi \times r_1 \times D + 2 \times \pi \times r_2 \times D + 2 \times \pi \times r_3 \times D$$.= $12.50 \times 10.80 + 2 \times \pi \times 1.40 \times 0.20 + 2 \times \pi \times 0.90 \times 0.20 + 2 \times \pi \times 0.80 \times 0.20$.= 138.89 m^2 #### Deduction of Dome area (i) Dome-1 = Bottom Area of Dome-1 .= $$\pi / 4 \times d^2$$.= $\pi / 4 \times 2.80^2$.= 6.157 m² (ii) Dome-2 = Bottom Area of Dome-2 .= $$\pi /4 \times d^2$$.= $\pi /4 \times 1.80^2$.= 2.544 m² ## (iii) Dome-3 = Bottom Area of Dome-3 $$= \pi /4 \times d^2$$ $= \pi /4 \times 1.60^2$ $= 2.01 \text{ m}^2$ Total shuttering area required = 138.89 - 6.157 - 2.544 - 2.01= 128.176 m^2 # (B) Solution for Dome Slabs: # Dome-1: semi-circle length = 2 $$\pi$$ r x 1/2 .= 2 x π x 1.40 x 0.5 .= 4.398 m ## Dome-2: semi-circle length = $$2 \pi r \times 1/2$$ = $2 \times \pi \times 0.90 \times 0.5$ = 2.827 m 1. Volume of Concrete = Area x Depth $$= \pi / 4 \times d^2 \times D$$ $$= \pi /4 \times 2.827^2 \times 0.15$$ 2. Shuttering area = bottom area of dome $$= \pi / 4 \times d^2$$ $$= \pi /4 \times 2.827^2$$ # Dome-3: Segmental arc length = (8B-2R)/3 where $$B = V R^2 + H^2$$ therefore D = 1.60 m; R = 0.80 m; H = 0.60 m $$B = V R^2 + H^2$$ $$B = V 0.80^2 + 0.60^2$$ $$B = 1.0$$ Arc length $$'L' = (8 \times 1.0 - 2 \times 0.80)/3$$ $$= \pi / 4 \times d^2 \times D$$ $$= \pi /4 \times 2.133^2 \times 0.15$$ $$= \pi / 4 \times d^2$$ $$= \pi /4 \times 2.133^2$$ # (B) Solution for Minaret: ## Cylinder: $$= \pi / 4 \times d^2 \times D$$ $$= \pi /4 \times 0.50^2 \times 3.50$$ # Cone: $$= \pi / 4 \times d^2 \times D \times 1/3$$ $$= \pi /4 \times 0.70^2 \times 1.20 \times 1/3$$ $$.= 2 \times \pi \times 0.35 \times 1.20 \times 1/3$$ | Calculation for the Quantities of Roof Slab with Dome Slab | | | | | | | | | | |--|-------------------|------|------|--------|---------|-------|-------------------|-------------------|---------| | S.no |
Description | item | no.s | length | breadth | depth | Volume of | area of | Remarks | | | | | | in | in | in | Concrete | shutter | | | | | | | metre | metre | metre | in m ³ | in m ² | | | | | | | | | | | | | | 1 | Floor Slab | S | 1 | 12.500 | 10.800 | 0.200 | 27.000 | 138.896 | | | | | | | | | | | | | | | Deduction of area | | | | | | | | | | | Dome-1 | DM1 | 1 | Ø = | 2.800 | 0.200 | -1.232 | -6.158 | | | | Dome-2 | DM2 | 1 | Ø = | 1.800 | 0.200 | -0.509 | -2.545 | | | | Dome-3 | DM3 | 1 | Ø= | 1.600 | 0.200 | -0.402 | -2.011 | | | | | | | | | | | | | | 2 | Dome-1 | DM1 | 1 | Ø = | 4.398 | 0.150 | 2.279 | 15.191 | | | | Dome-2 | DM2 | 1 | Ø = | 2.827 | 0.150 | 0.942 | 6.277 | | | | Dome-3 | DM3 | 1 | Ø = | 2.133 | 0.150 | 0.536 | 3.573 | | | 3 | Minaret | | | | | | | | | | 3 | Cylinder | cyl | 1 | Ø = | 0.500 | 3.500 | 0.687 | 5.498 | | | | - | - | | Ø = | ł | | | | | | | Cone | cne | 1 | Ø = | 0.700 | 1.200 | 0.154 | 0.880 | | | | | | | | | Total | 29.455 | 159.602 | ## **HARDY SLAB CALCULATION** Problem-12: For a given drawing of Hardy Slab find - 1. Volume of Concrete - 2. Area of Shuttering AL-Madina Institute of Quantity Survey Head office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad. Phone no.: +91 40 66710031; +91 9550259317; website: www.quantitysurveyindia.com # (A) Solution for Hardy Slab: 1. Volume of Concrete = Area x Depth .= L x B x D .= $$4.90 \times 5.0 \times 0.27 = 6.615 \text{ m}^3$$ Deduction for the Hardy Bricks: Volume of Hardy Brick = L x B x D x no. of Bricks .= $$0.40 \times 0.20 \times 0.20 \times 28$$.= 0.448 m^3 Total Volume of Concrete required = $$6.615 - 0.448$$ $= 6.167 \text{ m}^3$ PICTURE SHOWING DETAILS OF HARDY SLAB & HARDY BRICKS PLACED ON SHUTTERING ## **WAFFLE SLAB CALCULATION** Problem-13: For a given drawing of Waffle Slab find - 1. Volume of Concrete - 2. Area of Shuttering ## (A) Solution for Waffle Slab: $$= 5.20 \times 5.80 \times 0.27 = 8.143 \text{ m}^3$$ Deduction for the Waffle Cone: Volume of Waffle Cone = L x B x D x no. of Cones .= $$0.30 \times 0.30 \times 0.20 \times 25$$ Average Length = $$(L1 + L2)/2$$ Average Breadth = $$(B1 + B2)/2$$ $$= (0.20 + 0.40)/2$$ ## PITCH ROOF CALCULATION Problem-14: For a given drawing of Pitch Roof find - 1. Volume of Concrete - 2. Area of Shuttering $$c = V(3.0^2 + 1.0^2)$$ $c = 3.162 m$ (inclined length) ## (A) Solution for Pitch Roof: $$= (a/4) \times V(4b^2 - a^2) \times t$$ $$= (3/4) \times V(4 \times 3.162^2 - 3.0^2) \times 0.15$$ no. of panels = 6 total Volume of Concrete required = $0.626 \times 6 = 3.756 \text{ m}^3$ 2. Shuttering Area = Peripheral length x thickness of slab + Bottom area of Slab area of each panel = $(a/4) \times V(4b^2 - a^2)$ = $(3/4) \times V(4 \times 3.162^2 - 3.0^2)$ no. of panels = 6 #### **SEMI-ROUND STAIR-CASE CALCULATION** Problem-15: For a given drawing of Semi-round Stair-case find - 1. Volume of Concrete - 2. Area of Shuttering PLAN OF HALF-ROUND STAIR CASE Height of riser = 0.15m Tread = Radius of waist Slab = 3.50m Height of Ceiling = Height of Riser x No. of Riser Waist Slab thickness = 0.15m Width of Waist Slab = 1.30m # (A) Solution for stair case: To find out semi-circle length the formula = $2 \times \pi \times r \times 0.50$ therefore radius of waist slab 'r'= 3.50m .= $2 \times \pi \times 3.5 \times 0.50$.= 10.99m (linear length) Inclined length = $V(10.99^2 + 3.60^2)$ C = 11.56m #### 1. Waist Slab: (a) Volume of Concrete for waist slab .= Area x thickness .= L x B x D .= 11.56 x 1.30 x 0.15 .= 2.254 m³ (b) Shuttering Area for waist slab .= L x D x 2 + B x D + L x B .= 11.56 x 0.15 x 2 + 1.30 x 0.15 + 11.56 x 1.30 .= 18.691 m² #### 2. Steps: length of step = 1.30m width of tread = 0.30m on one side and 0.40m on other side Average width of riser = (0.30 + 0.40)/2 B := 0.35m Height of Riser = 0.15m (a) Volume of Concrete for Step .= Area x length of step x no. of steps .= 1/2 x b x h x L x no. of steps .= 0.50 x 0.35 x 0.15 x 1.3 x 24 - 0.30 X 0.33 X 0.13 X $.= 0.819 \text{ m}^3$ (b) Shuttering area for Step $= (1/2 \times B \times H \times 2 + L \times D) \times no.s$.= (0.50 x 0.35 x 0.15 x 2 + 1.30 x 0.15) x 24 .= 5.94 m² ## 3. Hand-Rail: therefore L = 11.56m B = 0.10m D = 0.80m no.s = 2 (a) Volume of Concrete for Hand-Rail .= area x depth x no. of Hand rails .= L x B x D x no.s .= 11.56 x 0.10 x x 0.80 x 2 .= 1.849 m³ (b) Shuttering area for Hand-Rail .= (L+B) x 2 x D x no.s .= (11.56 + 0.10) x 2 x 0.80 x 2 .= 37.312 m² (i) Total Concrete for stair case .= 2.254 + 0.819 + 1.849 .= 4.922 m³ (ii) Total Shuttering area for stair-case .= 18.691 + 5.94 + 37.312 .= 61.943 m² #### **LIFT-PIT CALCULATION** Problem-15: For a given drawing of Lift-Pit find - 1. Volume of Concrete - 2. Area of Shuttering ## (A) Solution for Lift-Pit: #### 1. Plain Cement Concrete Bed: L = 2.30m; B = 2.0m; T = 0.10m (a) Volume of Concrete for p.c.c bed .= area x thickness of p.c.c bed .= L x B x D .= 2.30 x 2.0 x 0.10 $.= 0.46 \text{ m}^3$ (b) Shuttering area for p.c.c bed .= (L+B) x 2 x D .= (2.30 + 2.0) x 2 x 0.10 $.= 0.86 \text{ m}^2$ ## 2. Bottom slab: L = 2.10m; B = 1.80m; T = 0.20m (a) Volume of Concrete for Bottom slab .= area x thickness of bottom slab .= L x B x D .= 2.10 x 1.80 x 0.20 .= 0.756 m³ (b) Shuttering area for Bottom slab .= (L+B) x 2 x D .= (2.10 + 1.80) x 2 x 0.20 .= 1.56 m² # 3. Shear wall along Horizontal plane: L = 2.10m; B = 0.20m; H = 1.20 m (a) Volume of Concrete for Shear wall .= area x depth x no. of walls .= L x B x D x no.s .= 2.10 x 0.20 x 1.20 x 2 $.= 1.008 \text{ m}^3$ (b) Shuttering area for Shear wall $= L \times D \times 2 \times no.s$ $= 2.10 \times 1.20 \times 2 \times 2$ $= 10.08 \text{ m}^2$ ## 4. Shear wall along vertical plane: $$L = 1.40 \text{m}$$; $B = 0.20 \text{m}$; $H = 1.20 \text{ m}$ (a) Volume of Concrete for Shear wall .= area x depth x no. of walls .= L x B x D x no.s .= 1.40 x 0.20 x 1.20 x 2 0.672 3 .= 0.672 m³ (b) Shuttering area for Shear wall .= L x D x 2 x no.s .= 1.40 x 1.20 x 2 x 2 .= 6.72m² ## 5. Plat-forms: $$L = 0.40m$$; $B = 0.40m$; $H = 0.50 m$ (a) Volume of Concrete for Plat-form .= area x depth x no. of plat-forms .= L x B x D x no.s .= 0.40 x 0.40 x 0.50 x 2 .= 0.16 m³ (b) Shuttering area for Plat-form .= (L + B) x 2 x D x no.s .= (0.40 + 0.40) x 2 0.50 x 2 .= 1.60 m² - (i) Total Volume of Concrete for Lift-Pit $= 0.46 + 0.756 + 1.008 + 0.672 + 0.16 = 3.056 \text{ m}^3$ - (ii) Total Shuttering area for Lift-Pit $.= 0.86 + 1.56 + 10.08 + 6.72 + 1.60 = 20.82 \text{ m}^2$ #### **RAMP CALCULATION** Problem-15: For a given drawing of Ramp find - 1. Volume of Concrete - 2. Area of Shuttering AL-Madina Institute of Quantity Survey Head office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad. Phone no.: +91 40 66710031; +91 9550259317; website: www.quantitysurveyindia.com # (A) Solution for Ramp: # 1. Ramp at entrance: $$L = 10.547 \text{ m}$$; $B = 4.0 \text{m}$; $T = 0.20 \text{m}$ $$c = V(a^2 + b^2)$$ $c = V(9.80^2 + 3.90^2)$ $c = 10.547m$ - (a) Volume of Concrete for Ramp .= area x thickness of Ramp - .= L x B x D - .= 10.547 x 4.0 x 0.20 - .= 8.437 m³ - (b) Shuttering area for p.c.c bed .= (L+B) x 2 x D - .= (10.547 + 4.0) x 2 x 0.20 - .= 5.81 m² # 2. Ramp at exit: $$L = 10.547 \text{ m}$$; $B = 4.20 \text{m}$; $T = 0.20 \text{m}$ $$c = V(a^2 + b^2)$$ $c = V(9.80^2 + 3.90^2)$ $c = 10.547m$ $$.= 5.89 \text{ m}^2$$ (i) Total Concrete for both Ramps = $$8.437 + 8.859 = 17.296 \text{ m}^3$$ (ii) Total Shuttering area for both Ramps = $$5.81 + 5.89 = 11.70 \text{ m}^3$$ # **STANDARD DATA IN METRIC SYSTEM** - 1 Cement : Mortar Required for Brick work/m 3 - 2 Cement: Mortar Required for Plastering/m³ - 3 Concrete-Mix Design with different proportion & ratios/m³ | (a) | Cem | Cement : Mortar required for Brick Work (for 1m ³ of Brick wo | | | | | | |-----|------|--|-------------------|--------|---------|-------------------|--| | | S.no | Proportion or ratio | Sand in | Cement | Cement | Cement | | | | | | in m ³ | in Kgs | in Bags | in m ³ | | | | 1 | . 1:3 | 0.20 | 96.00 | 1.920 | 0.066 | | | | 2 | . 1:4 | 0.20 | 72.00 | 1.440 | 0.050 | | | | 3 | . 1:5 | 0.20 | 57.60 | 1.152 | 0.040 | | | | 4 | . 1:6 | 0.20 | 48.00 | 0.960 | 0.033 | | | | 5 | . 1:7 | 0.20 | 41.14 | 0.822 | 0.028 | | | | 6 | . 1:8 | 0.20 | 36.00 | 0.720 | 0.025 | | For 1m³ of C:M Sand = 0.20 m³ Constant for all proportion For $1m^3$ of C:M Cement in kgs = (0.20×1440) /last digit of ratio or proportion .= 0.20 x 1440/3 .= 96.0 kgs therefore each bag of cement = 50kgs Cement in Bags .= 96.0/50 .= 1.92 bags AL-Madina Institute of Quantity Survey $1440 \text{ kgs} = 1\text{m}^3$ 96.0 kgs = ? m³ 96.0/1440 .= 0.066 m³ Cement in m³: #### **Standard Weight & Density** Weight of Cement in kgs/m³ .= 1440 kgs Weight of each Cement Bag .= 50 kgs No. of Cement bags /m³ .= 1440/50 .= 28.80 or approximately equal to 29 bags 4 Weight of Sand /m³ .= 1600kgs to 1750 kgs. Sand weight varies depending on condition i.e. Dry or Moisturizing 5 Weight of Aggregate /m³ .= 2400 kgs 6 Weight of Water / m³ .= 1000 kgs 7 Weight of Water /litre .= 1 kg 8 Density of Concrete /m³ .= 2400 kgs 9 Density of Steel /m³ .= 7850 kgs 10 Density of Brick .= 1.92 grms/cm³ (Normal clay) or 2.42 grms/cm³ (Fine Clay) 11 Weight of Concrete /m³ .= 2500 kgs to 2800 kgs (R.C.C) $M_{15} = 1:2:4$ Where M_{15} = Grade of Concrete 1 ton = 1000 kgs M= Mix-Design 1 quintal = 100 kgs 15 = Compressive Strength of Concrete 1 kg = 1000 grms 1 = 1 bag of Cement 2 = 2 bags of Sand 4 = 4 bags of Aggregate | (b) | Cement: Mortar required for Plastering (for 1m ³ of C:M for Plastering) | | | | | | | |-----|--|---------------------|--------|--------|--------|--------|--| | | C 12.0 | Droportion or rotio | Condin | Comont | Comont | Comont | | | S.no | Proportion or ratio |
Sand in | Cement | Cement | Cement | |------|---------------------|-------------------|--------|---------|-------------------| | | | in m ³ | in Kgs | in Bags | in m ³ | | 1 | . 1:3 | 1.25 | 600.00 | 12.0 | 0.417 | | 2 | . 1:4 | 1.25 | 450.00 | 9.0 | 0.313 | | 3 | . 1:5 | 1.25 | 360.00 | 7.2 | 0.250 | | 4 | . 1:6 | 1.25 | 300.00 | 6.0 | 0.208 | | 5 | . 1:7 | 1.25 | 257.14 | 5.143 | 0.179 | | 6 | . 1:8 | 1.25 | 225.00 | 4.5 | 0.156 | Cement in m^3 : 1440 kgs = $1m^3$ 600.0 kgs = $? m^3$ 600.0/1440 .= 0.4166 m³ For 1m³ of C:M Sand = 1.25 m³ Constant for all proportion For 1m³ of C:M Cement in kgs = (1.25 x 1440)/last digit of ratio or proportion .= 1.25 x 1440/3 .= 600.0 kgs therefore each bag of cement = 50kgs Cement in Bags .= 600/50 .= 12 bags AL-Madina Institute of Quantity Survey # **General Practice:** Plastering is done in two coats i.e. 1st coat & 2nd coat 1st coat is called as Rough Coat with Cement : Mortar ratio 1:6 2nd Coat is called as Finish Coat with Cement : Mortar ratio 1:3 Total thickness of Plaster should be consider as 20mm or 2cm or 0.02 m thickness for 1^{st} coat of plaster . = 12mm thickness for 2^{nd} coat of plaster . = 8mm total thickness .= 20mm (c) Cement, Sand & Aggregate required for different Grades of Concrete /m ³ S.no Grade of Ratio of Sand in Aggregate Cement Cement Cement Cement in m³: | | Concrete | Concrete | in m ³ | in m ³ | in Kgs | in Bags | in m ³ | |---|------------------|-------------|-------------------|-------------------|--------|---------|-------------------| | 1 | M _{7.5} | . 1:4:8 | 0.46 | 0.92 | 165.6 | 3.312 | 0.115 | | 2 | M ₁₀ | . 1:3:6 | 0.46 | 0.92 | 220.8 | 4.416 | 0.153 | | 3 | M ₁₅ | . 1:2:4 | 0.46 | 0.92 | 331.2 | 6.624 | 0.230 | | 4 | M ₂₀ | . 1:1.5:3 | 0.46 | 0.92 | 441.6 | 8.832 | 0.307 | | 5 | M ₂₅ | . 1:1:2 | 0.46 | 0.92 | 662.4 | 13.248 | 0.460 | | 6 | M ₃₀ | .1:0.75:1.5 | 0.46 | 0.92 | 883.2 | 17.664 | 0.613 | | 7 | M ₃₅ | . 1:0.5:1 | 0.46 | 0.92 | 1324.8 | 26.496 | 0.920 | .= 0.115 m³ $1440 \text{ kgs} = 1\text{m}^3$ 165.60 kgs = ? m³ 165.60/1440 8 M_{40} .1:0.25:0.5 0.46 0.92 2649.6 52.992 For 1m³ of Concrete Sand = 0.46 m³ Constant for all proportion For 1m³ of Concrete Aggregate = 0.92 m³ Constant for all proportion For $1m^3$ of Concrete Cement in kgs = (0.92×1440) /last digit of ratio or proportion .= 0.92 x 1440/8 .= 165.60 kgs Each bag of cement = 50kgs Therefore Cement in Bags .= 165.60/50 .= 3.312 bags 1.840 # **Brick Work Calculations & problems** # A. Indian Red Brick Size of Brick . = 9" x 4" x 3" .= 0.2286m x 0.10m x 0.0762m Volume of each Brick = 0.001741 m³ no. of bricks / m³ .= total Volume of brick work Volume of each Brick .= 1/0.001741 .= 574.38 or approximately equal to 575 bricks Size of each Brick .= 0.40m x 0.20m x 0.20m Volume of each Brick = 0.016 m³ no. of bricks / m³ .= total Volume of brick work Volume of each Brick .= 1/0.016 .= 62.50 or approximately equal to 63 bricks 4" or 0.10 RED BRICK ✓ □ 3" or 0.0762m 9" or 0.2286m # Problem-1: For an area of 160 m² with wall thickness 10 cm find - (i) No. of bricks - (ii) C:M required for Brick work with ratio 1:6 # <u>Solution</u> 1. volume of brick work = Area x thickness .= 160 x 0.10 .= 16 m³ Volume of each brick .= 9190.12 or approximately equal to 9191 bricks 3. C:M required for Brick work: (i) Sand = $$1m^3 = 0.20 m^3$$ $16 m^3 = ? m^3$ $.= 16 \times 0.20$ $.= 3.20 m^3$ (ii) Cement = $$1m^3$$ = $(0.20 \times 1440)/6$ $1 m^3$.= 48 kgs 16 $$m^3$$.= ? m^3 .= 16 x 48 .= 768 kgs no. of Cement bags = 768 / 50 .= 15.36 or approximately equal to 16 bags # Problem-2: For an area of 1800 ft² with wall thickness 20 cm find - (i) No. of bricks - (ii) C:M required for Brick work with ratio 1:5 <u>Solution</u> .= 167.311 x 0.20 .= 33.462 m³ therefore 1m = 3.28 ft .= 1800/3.28² .= 167.311 m² 2. No. of bricks = t otal volume of brick work Volume of each brick .= 33.462/0.001741 .= 19219.98 or approximately equal to 19220 bricks # 3. C:M required for Brick work: (i) Sand = $$1m^3 = 0.20 m^3$$ $33.462 m^3 = ? m^3$ $.= 33.462 \times 0.20$ $.= 6.692 m^3$ (ii) Cement = $$1m^3$$ = $(0.20 \times 1440)/5$ $1 m^3$.= 57.6 kgs $33.462 m^3$.= ? m^3 .= 33.462×57.60 .= 1927.41 kgs no. of Cement bags = 1927.41 / 50 .= 38.548 or approximately equal to 39 bags # Problem-3: For a given plan find (i) No. of bricks (ii) C:M required for Brick work with ratio 1:5 D = 1.0 X 2.10 Height of Ceiling = 3.0 m # <u>Solution</u> 1 volume of brick work = Area x thickness Deduction of Door = L x B x D = $1.0 \times 2.10 \times 0.20 = -0.42 \text{ m}^3$ Deduction of Door Lintel = L x B x D = $1.20 \times 0.10 \times 0.20 = -0.024 \text{ m}^3$ Note: Breadth of Lintel = thickness of wall = 0.20 m for Lintel Dimension 10cm bearing should be added on each side of length of Door and Height of lintel = 0.10m Total Volume of brick work after deductions = $11.28 - 0.42 - 0.024 = 10.836 \text{ m}^3$ # T=0.20 ROOM-1 5.0m x 4.0m D PLAN 1.20 0.10 LINTEL 0.10 0.10 DOOR AL-Madina Institute of Quantity Survey = t otal volume of brick work Volume of each brick - .= 10.836/0.001741 - .= 6224.009 or approximately equal to 6225 bricks #### C:M required for Brick work: 3 (i) Sand = $$1m^3 = 0.20 m^3$$ $10.836 m^3 = ? m^3$ $.= 10.836 \times 0.20$ $.= 2.167 m^3$ (ii) Cement = $$1m^3$$ = $(0.20 \times 1440)/5$ $1 m^3$.= 57.6 kgs $10.836 m^3$.= ? m^3 .= 10.836×57.60 .= 624.153 kgs no. of Cement bags = 624.153/50 .= 12.48 or approximately equal to 13 bags # Problem-4: For a given plan find - (i) No. of bricks - (ii) C:M required for Brick work with ratio 1:6 D = 1.0 X 2.10Height of Ceiling = 3.0 m # Solution: (i) for External wall or 20cm wall $$L = 28.80 \text{ m}$$ $$D = 3.0 \text{ m}$$ volume of brick work for 20cm wall = Area x thickness $.=L \times B \times D$.= 28.80 x 0.20 x 3.0 .= 17.28 m³ AL-Madina Institute of Quantity Survey Head office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad. Phone no.: +91 40 66710031; +91 9550259317; website: www.quantitysurveyindia.com (ii) for internal wall or 10cm wall Length of wall = $$'L' = 4.0m$$ $$L = 4.0 \text{ m}$$ $$B = 0.10 \text{ m}$$ $$D = 3.0 \text{ m}$$ volume of brick work for 10cm wall = Area x thickness .= 4.0 x 0.10 x 3.0 .= 1.20 m³ (iii) Total Volume of Brick work .= $17.28 + 1.20 = 18.48 \text{ m}^3$ Deduction of Door = L x B x D x no.s = $1.0 \times 2.10 \times 0.20 \times 1 = -0.42 \text{ m}^3$ Deduction of Door = L x B x D x no.s = $1.0 \times 2.10 \times 0.10 \times 1 = -0.21 \text{ m}^3$ Deduction of Door Lintel = $L \times B \times D \times no.s = 1.20 \times 0.10 \times 0.20 \times 1 = -0.024 \text{ m}^3$ Deduction of Door Lintel = L x B x D x no.s = $1.20 \times 0.10 \times 0.10 \times 1 = -0.012 \text{ m}^3$ Note: Breadth of Lintel = thickness of wall = 0.20 m for Lintel Dimension 10cm bearing should be added on each side of length of Door and Height of lintel = 0.10m Total Volume of brick work after deductions = $18.48 - 0.42 - 0.21 - 0.024 - 0.012 = 17.814 \text{ m}^3$ (iv) No. of bricks = t otal volume of brick work Volume of each brick .= 17.814/0.001741 .= 10232.05 or approximately equal to 10233 bricks (v) C:M required for Brick work: (i) Sand = $$1 \text{m}^3 = 0.20 \text{ m}^3$$ $17.814 \text{ m}^3 = ? \text{ m}^3$.= 17.814 x 0.20 .= 3.562 m³ (ii) Cement = $1m^3$ = $(0.20 \times 1440)/6$.= 17.814 x 48 .= 855.072 kgs no. of Cement bags = 855.072 / 50 .= 17.101 or approximately equal to 18 bags LINTEL - 1.00 DOOR #### **Plastering Calculations & problems** #### Problem-1: For an area of 120 m² find C:M required for plastering - (i) 1st coat with c:m ratio 1:6 - (ii) 2nd coat with c:m ration 1:3 # **Solution** (i) 1st coat of plaster: thickness of plaster = 12mm or 0.012m C:M = 1:6 volume of C:M for Plastering = Area of plaster x thickness of plaster .= 120 x 0.012 .= 1.44 m³ Cement: Mortar required for plastering: <u>a. Sand :</u> $$1m^3 = 1.25 m^3$$ 1.44 m³ = ? m³ b. Cement : $$1m^3 = (1.25 \times 1440)/6$$ $$1m^3 = 300 \text{ kgs}$$ $$1.44 \text{ m}^3 = ? \text{ Kgs}$$ no. of cement bags = 432/50 = 8.64 or 9 bags (ii) 2nd coat of plaster: thickness of plaster = 8mm or 0.008m $$C:M = 1:3$$ volume of C:M for Plastering = Area of plaster x thickness of plaster Cement: Mortar required for plastering: a. Sand: $$1m^3 = 1.25 m^3$$ $$0.96 \text{ m}^3 = ? \text{ m}^3$$.= 0.96×1.25 b. Cement : $$1m^3 = (1.25 \times 1440)/3$$ $$1m^3 = 600 \text{ kgs}$$ $$0.96 \text{ m}^3 = ? \text{ Kgs}$$ no. of cement bags = 576/50 = 11.52 or 12 bags total Sand required = $1.80 + 1.20 = 3.0 \text{ m}^3$ Total Cement required = 9 + 12 = 21 bags #### Problem-2: For an area of 2400 Sft find C:M required for plastering - (i) 1st coat with c:m ratio 1:5 - (ii) 2nd coat with c:m ration 1:3 #### Solution (i) 1st coat of plaster: thickness of plaster = 12mm or 0.012m C:M = 1:5 volume of C:M for Plastering = Area of plaster x thickness of plaster = $2400 \text{ ft}^2 = ? \text{ m}^2$ 1m = 3.28ft Cement: Mortar required for plastering: # <u>a. Sand :</u> $1m^3 = 1.25 m^3$ $2.676 m^3 = ? m^3$ $.= 2.676 \times 1.25$ $.= 3.345 m^3$ # b. Cement: (ii) 2nd coat of plaster: thickness of plaster = 8 mm or 0.008 m C:M = 1:3 volume of C:M for Plastering = Area of plaster x thickness of plaster Cement : Mortar required for plastering: # a. Sand: # b. Cement : total Sand required = $3.345 + 2.23 = 5.575 \text{ m}^3$ Total Cement required = 20 + 22 = 42 bags # Problem-3: For a given plan find - a Area of plastering excluding ceiling area - b C:M required for plastering - (i) 1st coat with c:m ratio 1:5 - (ii) 2nd coat with c:m ration 1:3 - (iii) Ceiling height = 3.0m - (iv) Slab thickness = 0.15 m - (v) Door $'D' = 1.0 \times 2.10$ # <u>Solution</u> - a. Area of plastering: - (i) Internal Plaster area = Peripheral Length x Depth $$.= (L + B) \times 2 \times D$$ $$.= (5.0 + 4.0) \times 2 \times 3.0$$ $$.= 54.0 \text{ m}^2$$ Deduction of door area = $L \times D = 1.0 \times 2.10 = -2.10$ total internal
plaster area = $54.0 - 2.10 = 51.90 \text{ m}^2$ Deduction of door area = $L \times D = 1.0 \times 2.10 = -2.10$ total external plaster area = $61.74 - 2.10 = 59.64 \text{ m}^2$ - (iii) Total Plaster area = $51.90 + 59.64 = 111.54 \text{ m}^2$ - b. C:M required for plastering: - (i) 1st coat of plaster: thickness of plaster = 12mm or 0.012m C:M = 1:5 volume of C:M for Plastering = Area of plaster x thickness of plaster = 111.54×0.012 = 1.338 m^3 Note: while finding external plaster area, Slab thickness has to be added with Ceiling height Cement: Mortar required for plastering: a. Sand : b. Cement : (ii) 2nd coat of plaster: thickness of plaster = 8mm or 0.008m $$C:M = 1:3$$ volume of C:M for Plastering = Area of plaster x thickness of plaster Cement: Mortar required for plastering: a. Sand: b. Cement : total Sand required = $1.672 + 1.115 = 2.787 \text{ m}^3$ Total Cement required = 10 + 11 = 21 bags # Problem-4: For a given plan find - a Area of plastering excluding ceiling area - b C:M required for plastering - (i) 1st coat with c:m ratio 1:5 - (ii) 2nd coat with c:m ration 1:3 - (iii) Ceiling height = 3.0m - (iv) Slab thickness = 0.15 m - (v) Door ' D ' = 1.0 x 2.10 # <u>Solution</u> - a. Area of plastering: - (i) Internal Plaster area = Peripheral Length x Depth Room-1 .= $$(L + B) \times 2 \times D$$.= $(5.0 + 4.0) \times 2 \times 3.0$ Room-2 .= $$(L + B) \times 2 \times D$$ (ii) External Plaster area = Peripheral Length x Depth (iii) Deduction of door area = $L \times D \times no.s = 1.0 \times 2.10 \times 4 = -8.40 \text{ m}^2$ Door area has to be deducted from both side i.e. front side & back side total plaster area = $54.0 + 53.40 + 93.24 - 8.40 = 192.24 \text{ m}^2$ Note: while finding external plaster area, Slab thickness has to be added with Ceiling height - b. C:M required for plastering: - (i) 1st coat of plaster: thickness of plaster = 12mm or 0.012m C:M = 1:5 volume of C:M for Plastering = Area of plaster x thickness of plaster Cement: Mortar required for plastering: a. Sand: b. Cement: $$1m^{3} = (1.25 \times 1440)/5$$ $$1m^{3} = 360 \text{ kgs}$$ $$2.306 \text{ m}^{3} = ? \text{ Kgs}$$ $$.= 2.306 \times 360$$ $$.= 830.16 \text{ kgs}$$ no. of cement bags = 830.16/50 = 16.60 or 17 bags • C:M = 1:3 (ii) 2nd coat of plaster: thickness of plaster = 8mm or 0.008m volume of C:M for Plastering = Area of plaster x thickness of plaster .= 192.24 x 0.008 .= 1.537 m³ Cement: Mortar required for plastering: <u>a. Sand :</u> b. Cement : total Sand required = $2.88 + 1.921 = 4.801 \text{ m}^3$ Total Cement required = 17 + 19 = 36 bags # Emulsion Paint or Water Bond-Paint for walls (Calculations & problems) #### Problem-1: For a given plan find - a Area of Paint - b Emulsion Paint required in litres - (i) Ceiling height = 3.0m - (ii) Slab thickness = 0.15 m - (iii) Door ' D ' = 1.0 x 2.10 #### Solution - a. Area of Emulsion Paint: - (i) Internal Paint area = Peripheral Length x Depth $$.= (L + B) \times 2 \times D$$ $$.= (5.0 + 4.0) \times 2 \times 3.0$$ $$.= 54.0 \text{ m}^2$$ Deduction of door area = $L \times D = 1.0 \times 2.10 = -2.10$ total internal paint area = $54.0 - 2.10 = 51.90 \text{ m}^2$ Deduction of door area = $L \times D = 1.0 \times 2.10 = -2.10$ total external paint area = $61.74 - 2.10 = 59.64 \text{ m}^2$ (iii) Total Paint area = $51.90 + 59.64 = 111.54 \text{ m}^2$ # Standards for Double Coat of Emulsion Paint: - (a) 1 Litre of paint will cover 4.2 m² area or - (b) 1 litre of paint will cover 45 Sft area - (iv) Emulsion paint required in litres: .= 26.557 or approximately equal to 27 Litres Phone no.: +91 40 66710031; +91 9550259317; website: www.quantitysurveyindia.com AL-Madina Institute of Quantity Survey Head office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad. Note: while finding external paint area, Slab thickness has to be added with Ceiling height #### Wall Putty- Calculations & problems # Problem-1: For a given plan find no. of bags required for wall-putty (only for internal area of walls) - (i) Ceiling height = 3.0m - (ii) Slab thickness = 0.15 m - (iii) Door ' D ' = 1.0 x 2.10 #### **Solution** - a. Area of Wall-putty: - (i) Internal area = Peripheral Length x Depth $$.= (L + B) x 2 x D$$ $$.= (5.0 + 4.0) x 2 x 3.0$$ $$.= 54.0 m2$$ Deduction of door area = $L \times D = 1.0 \times 2.10 = -2.10$ total internal area = $54.0 - 2.10 = 51.90 \text{ m}^2$ # **Standards for Wall-Putty:** Thickness of Wall-putty layer = 3mm or 0.003m Weight of Wall-putty/m³ = 849.0 kgs Volume of Wall-putty = Area x thickness .= $$51.90 \times .003$$.= 0.155 m^3 Available bag of Wall-putty = 5 kgs, 10 kg, 20 kg & 40 kg 5.40 AL-Madina Institute of Quantity Survey Head office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad. Phone no.: +91 40 66710031; +91 9550259317; website: www.quantitysurveyindia.com # Flooring- Calculations & problem # Problem-1: For a given plan find no. of Tiles required for Flooring if the size of each Floor Tile = 12" x 12" #### Solution - a. Area of Flooring: - (i) Floor area = $L \times B$.= 5.0×4.0 .= 20.0 m^2 - (ii) Size of each Floor tile = 12" x 12" $= 144^{"^2}$ $144^{"^2} = ? M^2$ therefore 1 m = 39.37" $= 144^{"^2}/39.37^2$ $= 0.0929 \text{ m}^2$ - (iii) no. of floor tiles required = Total floor area / area of each tile - .= 20.0/0.0929 - .= 215.28 or approximately equal to 216 Tiles # Over-Head Water Tank Calculation & Problem # Problem-1: For a given problem find - a volume of concrete - b shuttering area - c volume of water in litres. PLAN OF OVER-HEAD WATER TANK OVER-HEAD WATER TANK thickness of wall = 0.20m SECTION OF OVER-HEAD WATER TANK - (i) <u>Bottom Slab</u>: - 1 Volume of Concrete = L x B x D 2 Shuttering area = $(L+B) \times 2 \times D + L \times B$ - (ii) Top Slab: - 1 Volume of Concrete = L x B x D 2 Shuttering area = (L+B) x 2 x D + I x b(internal dimension) + (L+B) x 2 x D (cover dimension) - (iii) wall along horizontal axis: - 1 Volume of Concrete = L x B x D x no.s 2 Shuttering area = L x D x 2 x no.s - (iii) wall along vertical axis: - 1 Volume of Concrete = L x B x D x no.s 2 Shuttering area = $$L \times D \times 2 \times no.s$$ = 2.40 x 1.50 x 2 x 2 = 14.40 m² (iv) Total Volume of Concrete = $$1.05 + 1.05 + 1.50 + 1.44 = 5.04 \text{ m}^3$$ (v) Total Shuttering area = $8.59 + 6.93 + 15.0 + 14.40 = 44.92 \text{ m}^2$ # Water calculations: Internal volume of sump = L x B x D .= 2.10 x 2.40 x 1.50 .= 7.56 m³ According to Standards: $1 \text{ m}^3 = 1000 \text{ Litres}$ and $1 \text{ ft}^3 = 28.34 \text{ litres}$ 1m3 = 1000 litres 7.56 m3 = ? Litres .= 7.56 x 1000 .= 7560 litres each water tanker (truck) has capacity of 5000 litres therefore no. of water tanker required = 7560/5000 .= 1.512 or approximately equal to 2 tankers Phone no.: +91 40 66710031; +91 9550259317; website: www.quantitysurveyindia.com # **Plastering with Machine** AL-Madina Institute of Quantity Survey Head office: office no. 411, 4th floor, Tirumala Tower, Malakpet, Hyderabad. Phone no.: +91 40 66710031; +91 9550259317; website: www.quantitysurveyindia.com # You have Free down loaded 125 pages from 615 pages For complete book please visit our website:www.quantitysurveyindia.com or call us on +91 9550259317